Pregled bibliografske jedinice broj: 1169416
SIMPA: Statement-to-Item Matching Personality Assessment from text
SIMPA: Statement-to-Item Matching Personality Assessment from text // Future Generation Computer Systems, 130 (2022), 114-127 doi:10.1016/j.future.2021.12.014 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1169416 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
SIMPA: Statement-to-Item Matching Personality
Assessment from text
Autori
Gjurković, Matej ; Vukojević, Iva ; Šnajder, Jan
Izvornik
Future Generation Computer Systems (0167-739X) 130
(2022);
114-127
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Text-based personality assessment ; Natural language processing ; Text analysis ; Social media text ; Realistic accuracy model ; Personality prediction
Sažetak
Automated text-based personality assessment (ATBPA) methods can analyze large amounts of text data and identify nuanced linguistic personality cues. However, current approaches lack the interpretability, explainability, and validity offered by standard questionnaire instruments. To address these weaknesses, we propose an approach that combines questionnaire-based and text-based approaches to personality assessment. Our Statement-to-Item Matching Personality Assessment (SIMPA) framework uses natural language processing methods to detect self-referencing descriptions of personality in a target’s text and utilizes these descriptions for personality assessment. The core of the framework is the notion of a trait- constrained semantic similarity between the target’s freely expressed statements and questionnaire items. The conceptual basis is provided by the realistic accuracy model (RAM), which describes the process of accurate personality judgments and which we extend with a feedback loop mechanism to improve the accuracy of judgments. We present a simple proof-of-concept implementation of SIMPA for ATBPA on the social media site Reddit. We show how the framework can be used directly for unsupervised estimation of a target’s Big 5 scores and indirectly to produce features for a supervised ATBPA model, demonstrating state-of-the-art results for the personality prediction task on Reddit.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Psihologija
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-8671 - Računalni modeli za predviđanje i analizu ličnosti na temelju teksta (psy.txt) (Šnajder, Jan, HRZZ - 2020-02) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb,
Filozofski fakultet, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.sciencedirect.com doi.org psy.takelab.fer.hrCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus