Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1169367

RFM-LIR feature framework for churn prediction in the mobile games market


Perišić, Ana; Pahor, Marko
RFM-LIR feature framework for churn prediction in the mobile games market // IEEE transactions on games, 14 (2022), 2; 126-137 doi:10.1109/tg.2021.3067114 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1169367 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
RFM-LIR feature framework for churn prediction in the mobile games market

Autori
Perišić, Ana ; Pahor, Marko

Izvornik
IEEE transactions on games (2475-1502) 14 (2022), 2; 126-137

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
behavioral telemetry ; churn prediction ; feature importance ; online games ; RFM

Sažetak
Predicting player behavior and customer churn is one of the central and most common challenges in game analytics. A crucial stage in developing customer churn prediction model is feature engineering. In the mobile gaming field, features are commonly constructed from the raw behavioral telemetry data which leads to challenges related to the establishment of meaningful features and comprehensible feature frameworks. This research proposes an extended Recency, Frequency, and Monetary value (RFM) feature framework for churn prediction in the mobile gaming field by incorporating features related to user Lifetime, Intensity and Rewards (RFM-LIR). The proposed framework is verified by exploring behavioral differences between churners and non-churners within the established framework for different churn definitions and definition groups by applying robust exploratory methods and developing univariate and multivariate churn prediction models. Although feature importance varies among churn definitions, long term frequency feature stands out as the most important feature. The top five most important features distinguished by the multivariable churn prediction models include long and short term frequency features, monetary, intensity and lifetime features.

Izvorni jezik
Engleski

Znanstvena područja
Matematika, Interdisciplinarne prirodne znanosti, Interdisciplinarne tehničke znanosti, Ekonomija, Interdisciplinarne društvene znanosti



POVEZANOST RADA


Profili:

Avatar Url Ana Perišić (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Perišić, Ana; Pahor, Marko
RFM-LIR feature framework for churn prediction in the mobile games market // IEEE transactions on games, 14 (2022), 2; 126-137 doi:10.1109/tg.2021.3067114 (međunarodna recenzija, članak, znanstveni)
Perišić, A. & Pahor, M. (2022) RFM-LIR feature framework for churn prediction in the mobile games market. IEEE transactions on games, 14 (2), 126-137 doi:10.1109/tg.2021.3067114.
@article{article, author = {Peri\v{s}i\'{c}, Ana and Pahor, Marko}, year = {2022}, pages = {126-137}, DOI = {10.1109/tg.2021.3067114}, keywords = {behavioral telemetry, churn prediction, feature importance, online games, RFM}, journal = {IEEE transactions on games}, doi = {10.1109/tg.2021.3067114}, volume = {14}, number = {2}, issn = {2475-1502}, title = {RFM-LIR feature framework for churn prediction in the mobile games market}, keyword = {behavioral telemetry, churn prediction, feature importance, online games, RFM} }
@article{article, author = {Peri\v{s}i\'{c}, Ana and Pahor, Marko}, year = {2022}, pages = {126-137}, DOI = {10.1109/tg.2021.3067114}, keywords = {behavioral telemetry, churn prediction, feature importance, online games, RFM}, journal = {IEEE transactions on games}, doi = {10.1109/tg.2021.3067114}, volume = {14}, number = {2}, issn = {2475-1502}, title = {RFM-LIR feature framework for churn prediction in the mobile games market}, keyword = {behavioral telemetry, churn prediction, feature importance, online games, RFM} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font