Pregled bibliografske jedinice broj: 1169309
On the difference of Mostar index and irregularity of graphs
On the difference of Mostar index and irregularity of graphs // Bulletin of the Malaysian Mathematical Sciences Society, 44 (2021), 905-926 doi:10.1007/s40840-020-00991-y (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1169309 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the difference of Mostar index and irregularity of graphs
Autori
Gao, Fang ; K. Xu, Kexiang ; Došlić, Tomislav
Izvornik
Bulletin of the Malaysian Mathematical Sciences Society (0126-6705) 44
(2021);
905-926
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Mostar index · Irregularity · Tree · Cactus graph · Edge subdivision · Edge contraction
Sažetak
For a connected graph the irregularity irr (G) are G, the Mostar index Mo(G) and defined as Mo(G) = uv∈E(G) |n u − n v | and irr (G) = uv∈E(G) |d u − d v |, respec- tively, where d u is the degree of the vertex u of G and n u denotes the number of vertices of G which are closer to u than to v for an edge uv. In this paper, we focus on the difference M(G) = Mo(G) − irr (G) of graphs G. For trees T of order n, we characterize the minimum and second minimum M(T ) of T and the minimum M(T r (T )) of the triangulation graphs T r (T ). The parity of M of cactus graphs is also reported. The effect on M is studied for two local operations of subdivision and contraction of an edge in a tree. A formula for M(S(T )) of the subdivision trees S(T ) and the upper and lower bounds on M(S(T )) − M(T ) are determined with the corresponding extremal trees T . Moreover, three related open problems are proposed to M of graphs.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
HRZZ-IP-2016-06-1142 - Svjetlo na molekulama: istraživanje spregnute elektronske i nuklearne dinamike (LightMol) (Došlić, Nađa, HRZZ - 2016-06) ( CroRIS)
Ustanove:
Građevinski fakultet, Zagreb
Profili:
Tomislav Došlić
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus