Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1168145

Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data


Đokić, Kristian; Potnik Galić, Katarina; Štavlić, Katarina
Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data // RED 2021 Region, Entrepreneurship, Development / Leko Šimić, Mirna ; Crnković, Boris (ur.).
Osijek: Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2021. str. 677-690 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1168145 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data

Autori
Đokić, Kristian ; Potnik Galić, Katarina ; Štavlić, Katarina

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
RED 2021 Region, Entrepreneurship, Development / Leko Šimić, Mirna ; Crnković, Boris - Osijek : Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2021, 677-690

Skup
10th International Scientific Symposium Region, Entrepreneurship, Development (RED 2021)

Mjesto i datum
Online, 17.06.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Clustering ; Big data ; Restaurant ; Foursquare ; Location-based social network

Sažetak
Machine learning algorithms are increasingly used in various fields. Unlike supervised algorithms that require the engagement and knowledge of experts in a particular area, unsupervised algorithms do not need it and are therefore more comfortable to use. Clustering algorithms belong to unsupervised algorithms and are used to group data according to a given similarity criterion with achieving significant similarity between data within the same group and minor similarities between data belonging to different groups. In this paper, five clustering algorithms in restaurant location optimization in Zagreb are analyzed. The clustering algorithms' output result lists municipalities in Zagreb city divided into groups with similar properties. Based on these data, the investor can quickly conclude what individual municipalities are similar and based on that, a more objective assessment of the location of a restaurant or catering facility can be made before the investment. The data based on which the algorithms divided parts of Zagreb into groups were obtained from a social network that can store user locations. One of the essential functions of the used social network is sharing information about restaurants, cafes, and other catering facilities. The common name of these social networks is a location-based social network. The paper compares the Gaussian Mixture Model algorithm, k- means algorithm, Hierarchies algorithm, Agglomerative Clustering algorithm, and Spectral Clustering algorithm. The selected five algorithms have the property that one of their input variables is the number of clusters.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Veleučilište u Požegi

Poveznice na cjeloviti tekst rada:

www.efos.unios.hr

Citiraj ovu publikaciju:

Đokić, Kristian; Potnik Galić, Katarina; Štavlić, Katarina
Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data // RED 2021 Region, Entrepreneurship, Development / Leko Šimić, Mirna ; Crnković, Boris (ur.).
Osijek: Ekonomski fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku, 2021. str. 677-690 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Đokić, K., Potnik Galić, K. & Štavlić, K. (2021) Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data. U: Leko Šimić, M. & Crnković, B. (ur.)RED 2021 Region, Entrepreneurship, Development.
@article{article, author = {\DJoki\'{c}, Kristian and Potnik Gali\'{c}, Katarina and \v{S}tavli\'{c}, Katarina}, year = {2021}, pages = {677-690}, keywords = {Clustering, Big data, Restaurant, Foursquare, Location-based social network}, title = {Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data}, keyword = {Clustering, Big data, Restaurant, Foursquare, Location-based social network}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta Josipa Jurja Strossmayera u Osijeku}, publisherplace = {online} }
@article{article, author = {\DJoki\'{c}, Kristian and Potnik Gali\'{c}, Katarina and \v{S}tavli\'{c}, Katarina}, year = {2021}, pages = {677-690}, keywords = {Clustering, Big data, Restaurant, Foursquare, Location-based social network}, title = {Comparison of Clustering Algorithms for Optimal Restaurant Location Selection Using Location-Based Social Networks Data}, keyword = {Clustering, Big data, Restaurant, Foursquare, Location-based social network}, publisher = {Ekonomski fakultet Sveu\v{c}ili\v{s}ta Josipa Jurja Strossmayera u Osijeku}, publisherplace = {online} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)





Contrast
Increase Font
Decrease Font
Dyslexic Font