Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1167888

Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach


Mitchell, Andrew; Oberman, Tin; Aletta, Francesco; Kachlicka, Magdalena; Lionello, Matteo; Erfanian, Mercede; Kang, Jian
Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach // The Journal of the Acoustical Society of America, 150 (2021), 6; 4474-4488 doi:10.1121/10.0008928 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1167888 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach

Autori
Mitchell, Andrew ; Oberman, Tin ; Aletta, Francesco ; Kachlicka, Magdalena ; Lionello, Matteo ; Erfanian, Mercede ; Kang, Jian

Izvornik
The Journal of the Acoustical Society of America (0001-4966) 150 (2021), 6; 4474-4488

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
soundscape ; COVID-19 ; lockdown ; multi-level model ; public space

Sažetak
The unprecedented lockdowns resulting from COVID-19 in spring 2020 triggered changes in human activities in public spaces. A predictive modeling approach was developed to characterize the changes in the perception of the sound environment when people could not be surveyed. Building on a database of soundscape questionnaires (N = 1, 136) and binaural recordings (N = 687) collected in 13 locations across London and Venice during 2019, new recordings (N = 571) were made in the same locations during the 2020 lockdowns. Using these 30-s-long recordings, linear multilevel models were developed to predict the soundscape pleasantness (𝑅2=0.85 R 2 = 0.85 ) and eventfulness (𝑅2=0.715 R 2 = 0.715 ) during the lockdown and compare the changes for each location. The performance was above average for comparable models. An online listening study also investigated the change in the sound sources within the spaces. Results indicate (1) human sounds were less dominant and natural sounds more dominant across all locations ; (2) contextual information is important for predicting pleasantness but not for eventfulness ; (3) perception shifted toward less eventful soundscapes and to more pleasant soundscapes for previously traffic-dominated locations but not for human- and natural- dominated locations. This study demonstrates the usefulness of predictive modeling and the importance of considering contextual information when discussing the impact of sound level reductions on the soundscape.

Izvorni jezik
Engleski

Znanstvena područja
Arhitektura i urbanizam, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Arhitektonski fakultet, Zagreb

Profili:

Avatar Url Tin Oberman (autor)

Poveznice na cjeloviti tekst rada:

doi asa.scitation.org

Citiraj ovu publikaciju:

Mitchell, Andrew; Oberman, Tin; Aletta, Francesco; Kachlicka, Magdalena; Lionello, Matteo; Erfanian, Mercede; Kang, Jian
Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach // The Journal of the Acoustical Society of America, 150 (2021), 6; 4474-4488 doi:10.1121/10.0008928 (međunarodna recenzija, članak, znanstveni)
Mitchell, A., Oberman, T., Aletta, F., Kachlicka, M., Lionello, M., Erfanian, M. & Kang, J. (2021) Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach. The Journal of the Acoustical Society of America, 150 (6), 4474-4488 doi:10.1121/10.0008928.
@article{article, author = {Mitchell, Andrew and Oberman, Tin and Aletta, Francesco and Kachlicka, Magdalena and Lionello, Matteo and Erfanian, Mercede and Kang, Jian}, year = {2021}, pages = {4474-4488}, DOI = {10.1121/10.0008928}, keywords = {soundscape, COVID-19, lockdown, multi-level model, public space}, journal = {The Journal of the Acoustical Society of America}, doi = {10.1121/10.0008928}, volume = {150}, number = {6}, issn = {0001-4966}, title = {Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach}, keyword = {soundscape, COVID-19, lockdown, multi-level model, public space} }
@article{article, author = {Mitchell, Andrew and Oberman, Tin and Aletta, Francesco and Kachlicka, Magdalena and Lionello, Matteo and Erfanian, Mercede and Kang, Jian}, year = {2021}, pages = {4474-4488}, DOI = {10.1121/10.0008928}, keywords = {soundscape, COVID-19, lockdown, multi-level model, public space}, journal = {The Journal of the Acoustical Society of America}, doi = {10.1121/10.0008928}, volume = {150}, number = {6}, issn = {0001-4966}, title = {Investigating urban soundscapes of the COVID-19 lockdown: A predictive soundscape modeling approach}, keyword = {soundscape, COVID-19, lockdown, multi-level model, public space} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • Social Science Citation Index (SSCI)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font