Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1167009

Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach


Tišljarić, Leo; Fernandes, Sofia; Gama, João; Carić, Tonči
Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach // Applied Sciences-Basel, 11 (2021), 24; 12017, 17 doi:10.3390/app112412017 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1167009 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach

Autori
Tišljarić, Leo ; Fernandes, Sofia ; Gama, João ; Carić, Tonči

Izvornik
Applied Sciences-Basel (2076-3417) 11 (2021), 24; 12017, 17

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
anomaly detection ; tensor-based approach ; traffic data ; speed transition matrix ; Intelligent Transport Systems

Sažetak
The increased development of urban areas results in a larger number of vehicles on the road network, leading to traffic congestion, which often leads to potentially dangerous situations that can be described as anomalies. The tensor-based methods emerged only recently in applications related to traffic anomaly detection. They outperform other models regarding simultaneously capturing spatial and temporal components, which are of immense importance in traffic dataset analysis. This paper presents a tensor-based method for extracting the spatiotemporal road traffic patterns represented with the speed transition matrices, with the goal of anomaly detection. A novel anomaly detection approach is presented, which relies on computing the center of mass of the observed traffic patterns. The method was evaluated on a large road traffic dataset and was able to detect the most anomalous parts of the urban road network. By analyzing spatial and temporal components of the most anomalous traffic patterns, sources of anomalies can be identified. Results were validated using the extracted domain knowledge from the Highway Capacity Manual. The anomaly detection model achieved a precision score of 92.88%. Therefore, this method finds its usages for safety experts in detecting potentially dangerous road segments, urban traffic planners, and routing applications.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Tehnologija prometa i transport, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Profili:

Avatar Url Leo Tišljarić (autor)

Avatar Url Tonči Carić (autor)

Citiraj ovu publikaciju:

Tišljarić, Leo; Fernandes, Sofia; Gama, João; Carić, Tonči
Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach // Applied Sciences-Basel, 11 (2021), 24; 12017, 17 doi:10.3390/app112412017 (međunarodna recenzija, članak, znanstveni)
Tišljarić, L., Fernandes, S., Gama, J. & Carić, T. (2021) Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach. Applied Sciences-Basel, 11 (24), 12017, 17 doi:10.3390/app112412017.
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Fernandes, Sofia and Gama, Jo\~{a}o and Cari\'{c}, Ton\v{c}i}, year = {2021}, pages = {17}, DOI = {10.3390/app112412017}, chapter = {12017}, keywords = {anomaly detection, tensor-based approach, traffic data, speed transition matrix, Intelligent Transport Systems}, journal = {Applied Sciences-Basel}, doi = {10.3390/app112412017}, volume = {11}, number = {24}, issn = {2076-3417}, title = {Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach}, keyword = {anomaly detection, tensor-based approach, traffic data, speed transition matrix, Intelligent Transport Systems}, chapternumber = {12017} }
@article{article, author = {Ti\v{s}ljari\'{c}, Leo and Fernandes, Sofia and Gama, Jo\~{a}o and Cari\'{c}, Ton\v{c}i}, year = {2021}, pages = {17}, DOI = {10.3390/app112412017}, chapter = {12017}, keywords = {anomaly detection, tensor-based approach, traffic data, speed transition matrix, Intelligent Transport Systems}, journal = {Applied Sciences-Basel}, doi = {10.3390/app112412017}, volume = {11}, number = {24}, issn = {2076-3417}, title = {Spatiotemporal Road Traffic Anomaly Detection: A Tensor-Based Approach}, keyword = {anomaly detection, tensor-based approach, traffic data, speed transition matrix, Intelligent Transport Systems}, chapternumber = {12017} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font