Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1166645

Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance


Bukal, Mario
Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance // Discrete & Continuous Dynamical Systems, 41 (2021), 7; 3389-3414 doi:10.3934/dcds.2021001 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1166645 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance

Autori
Bukal, Mario

Izvornik
Discrete & Continuous Dynamical Systems (1553-5231) 41 (2021), 7; 3389-3414

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Fourth-order evolution equation ; entropy methods ; Hellinger distance ; structure preserving numerical scheme ; convergence

Sažetak
In this paper we construct a unique global in time weak nonnegative solution to the corrected Derrida-Lebowitz-Speer-Spohn equation, which statistically describes the interface fluctuations between two phases in a certain spin system. The construction of the weak solution is based on the dissipation of a Lyapunov functional which equals to the square of the Hellinger distance between the solution and the constant steady state. Furthermore, it is shown that the weak solution converges at an exponential rate to the constant steady state in the Hellinger distance and thus also in the L1-norm. Numerical scheme which preserves the variational structure of the equation is devised and its convergence in terms of a discrete Hellinger distance is demonstrated.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Projekti:
HRZZ-UIP-2017-05-7249 - Matematička analiza i numeričke metode za višefazne sustave vođene difuzijom (MANDphy) (Bukal, Mario, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Mario Bukal (autor)

Poveznice na cjeloviti tekst rada:

doi www.aimsciences.org

Citiraj ovu publikaciju:

Bukal, Mario
Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance // Discrete & Continuous Dynamical Systems, 41 (2021), 7; 3389-3414 doi:10.3934/dcds.2021001 (međunarodna recenzija, članak, znanstveni)
Bukal, M. (2021) Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 41 (7), 3389-3414 doi:10.3934/dcds.2021001.
@article{article, author = {Bukal, Mario}, year = {2021}, pages = {3389-3414}, DOI = {10.3934/dcds.2021001}, keywords = {Fourth-order evolution equation, entropy methods, Hellinger distance, structure preserving numerical scheme, convergence}, journal = {Discrete and Continuous Dynamical Systems}, doi = {10.3934/dcds.2021001}, volume = {41}, number = {7}, issn = {1553-5231}, title = {Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance}, keyword = {Fourth-order evolution equation, entropy methods, Hellinger distance, structure preserving numerical scheme, convergence} }
@article{article, author = {Bukal, Mario}, year = {2021}, pages = {3389-3414}, DOI = {10.3934/dcds.2021001}, keywords = {Fourth-order evolution equation, entropy methods, Hellinger distance, structure preserving numerical scheme, convergence}, journal = {Discrete and Continuous Dynamical Systems}, doi = {10.3934/dcds.2021001}, volume = {41}, number = {7}, issn = {1553-5231}, title = {Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer- Spohn equation using the Hellinger distance}, keyword = {Fourth-order evolution equation, entropy methods, Hellinger distance, structure preserving numerical scheme, convergence} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI


Uključenost u ostale bibliografske baze podataka::


  • MathSciNet


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font