Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1166079

Semantic Segmentation for Posidonia Oceanica Coverage Estimation


Schultz, Stewart T.; Kruschel, Claudia; Wolff, Viviane; Fricke-Neuderth, Klaus; Pejdo, Dubravko; Jaeger, Jonas
Semantic Segmentation for Posidonia Oceanica Coverage Estimation // Pomorski zbornik
Rijeka, 2019. str. 335-341 doi:18048/2020.00.25. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1166079 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Semantic Segmentation for Posidonia Oceanica Coverage Estimation

Autori
Schultz, Stewart T. ; Kruschel, Claudia ; Wolff, Viviane ; Fricke-Neuderth, Klaus ; Pejdo, Dubravko ; Jaeger, Jonas

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Pomorski zbornik / - Rijeka, 2019, 335-341

Skup
International Conference on Marine Technology

Mjesto i datum
Rijeka, Hrvatska, 15.11.2019. - 16.11.2019

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Posidonia ; machine learning ; neural network

Sažetak
One method of assessing the ecological status of seagrass is the analysis of videographic images for variables such as total aerial cover. Georeferenced images can be collected and matched by location over time, and any changes in coverage can be compared statistically to the expected null hypothesis. Since the manual analysis of large datasets approaching over a million images is not feasible, automated methods are necessary. Because of the wide variation in underwater conditions affecting light transmission and reflection, including biological conditions, deep learning methods are necessary to distinguish seagrass from non-seagrass portions of images. Using deep semantic segmentation, we evaluated several deep neural network architectures, and found that the best performer is the DeepLabv3Plus network, at close to 88% (intersection over union). We conclude that the deep learning method is more accurate and many times faster than human annotation. This method can now be used for scoring of large image datasets for seagrass discrimination and cover estimates. Our code is available on GitHub: https://enviewfulda.github.io/LookingForSeagrassSe maticSegmentation

Izvorni jezik
Engleski



POVEZANOST RADA


Profili:

Avatar Url Dubravko Pejdo (autor)

Avatar Url Claudia Kruschel (autor)

Avatar Url Stewart Schultz (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada doi hrcak.srce.hr

Citiraj ovu publikaciju:

Schultz, Stewart T.; Kruschel, Claudia; Wolff, Viviane; Fricke-Neuderth, Klaus; Pejdo, Dubravko; Jaeger, Jonas
Semantic Segmentation for Posidonia Oceanica Coverage Estimation // Pomorski zbornik
Rijeka, 2019. str. 335-341 doi:18048/2020.00.25. (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Schultz, S., Kruschel, C., Wolff, V., Fricke-Neuderth, K., Pejdo, D. & Jaeger, J. (2019) Semantic Segmentation for Posidonia Oceanica Coverage Estimation. U: Pomorski zbornik doi:18048/2020.00.25..
@article{article, author = {Schultz, Stewart T. and Kruschel, Claudia and Wolff, Viviane and Fricke-Neuderth, Klaus and Pejdo, Dubravko and Jaeger, Jonas}, year = {2019}, pages = {335-341}, DOI = {18048/2020.00.25.}, keywords = {Posidonia, machine learning, neural network}, doi = {18048/2020.00.25.}, title = {Semantic Segmentation for Posidonia Oceanica Coverage Estimation}, keyword = {Posidonia, machine learning, neural network}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Schultz, Stewart T. and Kruschel, Claudia and Wolff, Viviane and Fricke-Neuderth, Klaus and Pejdo, Dubravko and Jaeger, Jonas}, year = {2019}, pages = {335-341}, DOI = {18048/2020.00.25.}, keywords = {Posidonia, machine learning, neural network}, doi = {18048/2020.00.25.}, title = {Semantic Segmentation for Posidonia Oceanica Coverage Estimation}, keyword = {Posidonia, machine learning, neural network}, publisherplace = {Rijeka, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font