Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1161714

Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning


Kušić, Krešimir; Ivanjko, Edouard; Vrbanić, Filip; Gregurić, Martin; Dusparic, Ivana
Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning // Mathematics, 9 (2021), 23; 3081, 28 doi:10.3390/math9233081 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1161714 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning

Autori
Kušić, Krešimir ; Ivanjko, Edouard ; Vrbanić, Filip ; Gregurić, Martin ; Dusparic, Ivana

Izvornik
Mathematics (2227-7390) 9 (2021), 23; 3081, 28

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
intelligent transport systems ; traffic control ; spatial-temporal variable speed limit ; multiagent systems ; reinforcement learning ; distributed W-learning ; urban motorways

Sažetak
The prevailing variable speed limit (VSL) systems as an effective strategy for traffic control on motorways have the disadvantage that they only work with static VSL zones. Under changing traffic conditions, VSL systems with static VSL zones may perform suboptimally. Therefore, the adaptive design of VSL zones is required in traffic scenarios where congestion characteristics vary widely over space and time. To address this problem, we propose a novel distributed spatial-temporal multi-agent VSL (DWL-ST-VSL) approach capable of dynamically adjusting the length and position of VSL zones to complement the adjustment of speed limits in current VSL control systems. To model DWL-ST-VSL, distributed W-learning (DWL), a reinforcement learning (RL)-based algorithm for collaborative agent-based self-optimization toward multiple policies, is used. Each agent uses RL to learn local policies, thereby maximizing travel speed and eliminating congestion. In addition to local policies, through the concept of remote policies, agents learn how their actions affect their immediate neighbours and which policy or action is preferred in a given situation. To assess the impact of deploying additional agents in the control loop and the different cooperation levels on the control process, DWL-ST-VSL is evaluated in a four-agent configuration (DWL4-ST-VSL). This evaluation is done via SUMO microscopic simulations using collaborative agents controlling four segments upstream of the congestion in traffic scenarios with medium and high traffic loads. DWL also allows for heterogeneity in agents’ policies ; cooperating agents in DWL4-ST-VSL implement two speed limit sets with different granularity. DWL4-ST-VSL outperforms all baselines (W-learning-based VSL and simple proportional speed control), which use static VSL zones. Finally, our experiments yield insights into the new concept of VSL control. This may trigger further research on using advanced learning-based technology to design a new generation of adaptive traffic control systems to meet the requirements of operating in a nonstationary environment and at the leading edge of emerging connected and autonomous vehicles in general.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Tehnologija prometa i transport



POVEZANOST RADA


Projekti:
HRZZ-IP-2020-02-5042 - Razvoj sustava zasnovanih na učećim agentima za unaprijeđenje upravljanja prometom u gradovima (DLASIUT) (Ivanjko, Edouard, HRZZ - 2020-02) ( CroRIS)
MZO Ustanova-Fakultet prometnih znanosti, Zagreb-ZZFPZ-P1-2020 - Sustav upravljanja prostorno-vremenski promjenjivim ograničenjem brzine u okolini umreženih vozila (Kušić, Krešimir, MZO Ustanova - Pametno prometno rješenje, Znanstvena zaklada Fakulteta prometnih znanosti) ( CroRIS)
--KK.01.1.1.01.009 - Napredne metode i tehnologije u znanosti o podatcima i kooperativnim sustavima (DATACROSS) (Šmuc, Tomislav; Lončarić, Sven; Petrović, Ivan; Jokić, Andrej; Palunko, Ivana) ( CroRIS)

Ustanove:
Fakultet prometnih znanosti, Zagreb

Poveznice na cjeloviti tekst rada:

doi www.mdpi.com

Citiraj ovu publikaciju:

Kušić, Krešimir; Ivanjko, Edouard; Vrbanić, Filip; Gregurić, Martin; Dusparic, Ivana
Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning // Mathematics, 9 (2021), 23; 3081, 28 doi:10.3390/math9233081 (međunarodna recenzija, članak, znanstveni)
Kušić, K., Ivanjko, E., Vrbanić, F., Gregurić, M. & Dusparic, I. (2021) Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning. Mathematics, 9 (23), 3081, 28 doi:10.3390/math9233081.
@article{article, author = {Ku\v{s}i\'{c}, Kre\v{s}imir and Ivanjko, Edouard and Vrbani\'{c}, Filip and Greguri\'{c}, Martin and Dusparic, Ivana}, year = {2021}, pages = {28}, DOI = {10.3390/math9233081}, chapter = {3081}, keywords = {intelligent transport systems, traffic control, spatial-temporal variable speed limit, multiagent systems, reinforcement learning, distributed W-learning, urban motorways}, journal = {Mathematics}, doi = {10.3390/math9233081}, volume = {9}, number = {23}, issn = {2227-7390}, title = {Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning}, keyword = {intelligent transport systems, traffic control, spatial-temporal variable speed limit, multiagent systems, reinforcement learning, distributed W-learning, urban motorways}, chapternumber = {3081} }
@article{article, author = {Ku\v{s}i\'{c}, Kre\v{s}imir and Ivanjko, Edouard and Vrbani\'{c}, Filip and Greguri\'{c}, Martin and Dusparic, Ivana}, year = {2021}, pages = {28}, DOI = {10.3390/math9233081}, chapter = {3081}, keywords = {intelligent transport systems, traffic control, spatial-temporal variable speed limit, multiagent systems, reinforcement learning, distributed W-learning, urban motorways}, journal = {Mathematics}, doi = {10.3390/math9233081}, volume = {9}, number = {23}, issn = {2227-7390}, title = {Spatial-Temporal Traffic Flow Control on Motorways Using Distributed Multi-Agent Reinforcement Learning}, keyword = {intelligent transport systems, traffic control, spatial-temporal variable speed limit, multiagent systems, reinforcement learning, distributed W-learning, urban motorways}, chapternumber = {3081} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • Academic OneFile (Gale)
  • China Academic Journals (CNKI)
  • DOAJ
  • EBSCO
  • J-Gate
  • ProQuest


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font