Pregled bibliografske jedinice broj: 1160302
Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score
Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score // British Journal of Surgery, 108 (2021), 11; 1274-1292 doi:10.1093/bjs/znab183 (međunarodna recenzija, članak, ostalo)
CROSBI ID: 1160302 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Machine learning risk prediction of mortality for
patients undergoing surgery with perioperative
SARS-CoV-2: the COVIDSurg mortality score
Autori
Dajti, I ; ... ; Mihanović, Jakov ; ... ; D Mazingi, D.
Kolaboracija
COVIDSurg Collaborative
Izvornik
British Journal of Surgery (0007-1323) 108
(2021), 11;
1274-1292
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, ostalo
Ključne riječi
perioperative care ; surgical procedures ; operative mortality ; machine learning ; sars-cov-2
Sažetak
To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.
Izvorni jezik
Engleski
Znanstvena područja
Kliničke medicinske znanosti, Javno zdravstvo i zdravstvena zaštita
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi academic.oup.com pubmed.ncbi.nlm.nih.govCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
- MEDLINE