Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1160203

A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework


Biswas, Mainak; Saba, Luca; Omerzu, Tomaž; Johri, Amer M.; Khanna, Narendra N.; Višković, Klaudija; Mavrogeni, Sophie; Laird, John R.; Pareek, Gyan; Miner, Martin et al.
A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework // Journal of Digital Imaging, 34 (2021), 3; 581-604 doi:10.1007/s10278-021-00461-2 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1160203 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework

Autori
Biswas, Mainak ; Saba, Luca ; Omerzu, Tomaž ; Johri, Amer M. ; Khanna, Narendra N. ; Višković, Klaudija ; Mavrogeni, Sophie ; Laird, John R. ; Pareek, Gyan ; Miner, Martin ; Balestrieri, Antonella ; Sfikakis, Petros P ; Protogerou, Athanasios ; Misra, Durga Prasanna ; Agarwal, Vikas ; Kitas, George D ; Kolluri, Raghu ; Sharma, Aditya ; Viswanathan, Vijay ; Ruzsa, Zoltan ; Nicolaides, Andrew ; Suri, Jasjit S.

Izvornik
Journal of Digital Imaging (0897-1889) 34 (2021), 3; 581-604

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Artificial intelligence ; Atherosclerosis ; Carotid intima-media thickness ; Carotid plaque area ; Carotid ultrasound ; Deep learning ; Machine learning ; Plaque

Sažetak
Cardiovascular diseases (CVDs) are the top ten leading causes of death worldwide. Atherosclerosis disease in the arteries is the main cause of the CVD, leading to myocardial infarction and stroke. The two primary image-based phenotypes used for monitoring the atherosclerosis burden is carotid intima-media thickness (cIMT) and plaque area (PA). Earlier segmentation and measurement methods were based on ad hoc conventional and semi- automated digital imaging solutions, which are unreliable, tedious, slow, and not robust. This study reviews the modern and automated methods such as artificial intelligence (AI)-based. Machine learning (ML) and deep learning (DL) can provide automated techniques in the detection and measurement of cIMT and PA from carotid vascular images. Both ML and DL techniques are examples of supervised learning, i.e., learn from “ground truth” images and transformation of test images that are not part of the training. This review summarizes (1) the evolution and impact of the fast-changing AI technology on cIMT/PA measurement, (2) the mathematical representations of ML/DL methods, and (3) segmentation approaches for cIMT/PA regions in carotid scans based for (a) region-of-interest detection and (b) lumen-intima and media-adventitia interface detection using ML/DL frameworks. AI-based methods for cIMT/PA segmentation have emerged for CVD/stroke risk monitoring and may expand to the recommended parameters for atherosclerosis assessment by carotid ultrasound.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

doi link.springer.com

Citiraj ovu publikaciju:

Biswas, Mainak; Saba, Luca; Omerzu, Tomaž; Johri, Amer M.; Khanna, Narendra N.; Višković, Klaudija; Mavrogeni, Sophie; Laird, John R.; Pareek, Gyan; Miner, Martin et al.
A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework // Journal of Digital Imaging, 34 (2021), 3; 581-604 doi:10.1007/s10278-021-00461-2 (međunarodna recenzija, članak, znanstveni)
Biswas, M., Saba, L., Omerzu, T., Johri, A., Khanna, N., Višković, K., Mavrogeni, S., Laird, J., Pareek, G. & Miner, M. (2021) A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework. Journal of Digital Imaging, 34 (3), 581-604 doi:10.1007/s10278-021-00461-2.
@article{article, author = {Biswas, Mainak and Saba, Luca and Omerzu, Toma\v{z} and Johri, Amer M. and Khanna, Narendra N. and Vi\v{s}kovi\'{c}, Klaudija and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Balestrieri, Antonella and Sfikakis, Petros P and Protogerou, Athanasios and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D and Kolluri, Raghu and Sharma, Aditya and Viswanathan, Vijay and Ruzsa, Zoltan and Nicolaides, Andrew and Suri, Jasjit S.}, year = {2021}, pages = {581-604}, DOI = {10.1007/s10278-021-00461-2}, keywords = {Artificial intelligence, Atherosclerosis, Carotid intima-media thickness, Carotid plaque area, Carotid ultrasound, Deep learning, Machine learning, Plaque}, journal = {Journal of Digital Imaging}, doi = {10.1007/s10278-021-00461-2}, volume = {34}, number = {3}, issn = {0897-1889}, title = {A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework}, keyword = {Artificial intelligence, Atherosclerosis, Carotid intima-media thickness, Carotid plaque area, Carotid ultrasound, Deep learning, Machine learning, Plaque} }
@article{article, author = {Biswas, Mainak and Saba, Luca and Omerzu, Toma\v{z} and Johri, Amer M. and Khanna, Narendra N. and Vi\v{s}kovi\'{c}, Klaudija and Mavrogeni, Sophie and Laird, John R. and Pareek, Gyan and Miner, Martin and Balestrieri, Antonella and Sfikakis, Petros P and Protogerou, Athanasios and Misra, Durga Prasanna and Agarwal, Vikas and Kitas, George D and Kolluri, Raghu and Sharma, Aditya and Viswanathan, Vijay and Ruzsa, Zoltan and Nicolaides, Andrew and Suri, Jasjit S.}, year = {2021}, pages = {581-604}, DOI = {10.1007/s10278-021-00461-2}, keywords = {Artificial intelligence, Atherosclerosis, Carotid intima-media thickness, Carotid plaque area, Carotid ultrasound, Deep learning, Machine learning, Plaque}, journal = {Journal of Digital Imaging}, doi = {10.1007/s10278-021-00461-2}, volume = {34}, number = {3}, issn = {0897-1889}, title = {A Review on Joint Carotid Intima-Media Thickness and Plaque Area Measurement in Ultrasound for Cardiovascular/Stroke Risk Monitoring: Artificial Intelligence Framework}, keyword = {Artificial intelligence, Atherosclerosis, Carotid intima-media thickness, Carotid plaque area, Carotid ultrasound, Deep learning, Machine learning, Plaque} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font