Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1159983

Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning


Lo, Julian; Heisler, Morgan; Vanzan, Vinicius; Karst, Sonja; Zadro Matovinovic, Ivana; Loncaric, Sven; Navajas, Eduardo V.; Beg, Mirza Faisal; Šarunic, Marinko V.
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning // Translational Vision Science & Technology, 9 (2020), 2; 38, 12 doi:10.1167/tvst.9.2.38 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1159983 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning

Autori
Lo, Julian ; Heisler, Morgan ; Vanzan, Vinicius ; Karst, Sonja ; Zadro Matovinovic, Ivana ; Loncaric, Sven ; Navajas, Eduardo V. ; Beg, Mirza Faisal ; Šarunic, Marinko V.

Izvornik
Translational Vision Science & Technology (2164-2591) 9 (2020), 2; 38, 12

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
: optical coherence tomography ; angiography ; machine learning ; diabetic retinopathy ; neural networks

Sažetak
Purpose: Optical coherence tomography angiography (OCT-A) permits visualization of the changes to the retinal circulation due to diabetic retinopathy (DR), a microvascular complication of diabetes. We demonstrate accurate segmentation of the vascular morphology for the superficial capillary plexus (SCP) and deep vascular complex (DVC) using a convolutional neural network (CNN) for quantitative analysis. Methods: The main CNN training dataset consisted of retinal OCT-A with a 6 × 6-mm field of view (FOV), acquired using a Zeiss PlexElite. Multiple- volume acquisition and averaging enhanced the vasculature contrast used for constructing the ground truth for neural network training. We used transfer learning from a CNN trained on smaller FOVs of the SCP acquired using different OCT instruments. Quantitative analysis of perfusion was performed on the resulting automated vasculature segmentations in representative patients with DR. Results: The automated segmentations of the OCT-A images maintained the distinct morphologies of the SCP and DVC. The network segmented the SCP with an accuracy and Dice index of 0.8599 and 0.8618, respectively, and 0.7986 and 0.8139, respectively, for the DVC. The inter-rater comparisons for the SCP had an accuracy and Dice index of 0.8300 and 0.6700, respectively, and 0.6874 and 0.7416, respectively, for the DVC. Conclusions: Transfer learning reduces the amount of manually annotated images required while producing high-quality automatic segmentations of the SCP and DVC that exceed inter-rater comparisons. The resulting intercapillary area quantification provides a tool for in-depth clinical analysis of retinal perfusion. Translational Relevance: Accurate retinal microvasculature segmentation with the CNN results in improved perfusion analysis in diabetic retinopathy.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Ivana Zadro (autor)

Avatar Url Sven Lončarić (autor)

Poveznice na cjeloviti tekst rada:

doi tvst.arvojournals.org

Citiraj ovu publikaciju:

Lo, Julian; Heisler, Morgan; Vanzan, Vinicius; Karst, Sonja; Zadro Matovinovic, Ivana; Loncaric, Sven; Navajas, Eduardo V.; Beg, Mirza Faisal; Šarunic, Marinko V.
Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning // Translational Vision Science & Technology, 9 (2020), 2; 38, 12 doi:10.1167/tvst.9.2.38 (međunarodna recenzija, članak, znanstveni)
Lo, J., Heisler, M., Vanzan, V., Karst, S., Zadro Matovinovic, I., Loncaric, S., Navajas, E., Beg, M. & Šarunic, M. (2020) Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning. Translational Vision Science & Technology, 9 (2), 38, 12 doi:10.1167/tvst.9.2.38.
@article{article, author = {Lo, Julian and Heisler, Morgan and Vanzan, Vinicius and Karst, Sonja and Zadro Matovinovic, Ivana and Loncaric, Sven and Navajas, Eduardo V. and Beg, Mirza Faisal and \v{S}arunic, Marinko V.}, year = {2020}, pages = {12}, DOI = {10.1167/tvst.9.2.38}, chapter = {38}, keywords = {: optical coherence tomography, angiography, machine learning, diabetic retinopathy, neural networks}, journal = {Translational Vision Science and Technology}, doi = {10.1167/tvst.9.2.38}, volume = {9}, number = {2}, issn = {2164-2591}, title = {Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning}, keyword = {: optical coherence tomography, angiography, machine learning, diabetic retinopathy, neural networks}, chapternumber = {38} }
@article{article, author = {Lo, Julian and Heisler, Morgan and Vanzan, Vinicius and Karst, Sonja and Zadro Matovinovic, Ivana and Loncaric, Sven and Navajas, Eduardo V. and Beg, Mirza Faisal and \v{S}arunic, Marinko V.}, year = {2020}, pages = {12}, DOI = {10.1167/tvst.9.2.38}, chapter = {38}, keywords = {: optical coherence tomography, angiography, machine learning, diabetic retinopathy, neural networks}, journal = {Translational Vision Science and Technology}, doi = {10.1167/tvst.9.2.38}, volume = {9}, number = {2}, issn = {2164-2591}, title = {Microvasculature Segmentation and Intercapillary Area Quantification of the Deep Vascular Complex Using Transfer Learning}, keyword = {: optical coherence tomography, angiography, machine learning, diabetic retinopathy, neural networks}, chapternumber = {38} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font