Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1159865

(Re)purposing starts virtually by predictive machine-learning models


Stepanić, Višnja; Oršolić, Davor; Šmuc, Tomislav
(Re)purposing starts virtually by predictive machine-learning models // 27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts / Marković, Dean ; Meštrović, Ernest ; Namjesnik, Danijel ; Tomašić, Vesna (ur.).
Zagreb: Hrvatsko kemijsko društvo, 2021. str. 16-16 (pozvano predavanje, recenziran, sažetak, znanstveni)


CROSBI ID: 1159865 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
(Re)purposing starts virtually by predictive machine-learning models

Autori
Stepanić, Višnja ; Oršolić, Davor ; Šmuc, Tomislav

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts / Marković, Dean ; Meštrović, Ernest ; Namjesnik, Danijel ; Tomašić, Vesna - Zagreb : Hrvatsko kemijsko društvo, 2021, 16-16

Skup
27. hrvatski skup kemičara i kemijskih inženjera (27HSKIKI)

Mjesto i datum
Veli Lošinj, Hrvatska, 05.10.2021. - 08.10.2021

Vrsta sudjelovanja
Pozvano predavanje

Vrsta recenzije
Recenziran

Ključne riječi
Cheminformatics, Herbicides, Kinases, Machine learning

Sažetak
The cheapest, fastest and efficient way to find active compounds for biological targets, novel biological activities for compounds “in shelves” or to reveal targets for discovered natural products, is to test compounds virtually by using proper in silico approaches and/or models at the beginning. The predictive machine learning (ML) model developed for specific (bio)activity can be applied for prioritizing assays for in vitro testing of compounds and their (re)purposing. The two ML models which may shed light on potential biological activities for compounds, will be presented. They have been developed by using publicly available datasets and are incorporated within virtual modular platforms for detecting potential phytotoxic molecules and kinase inhibitors.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Biologija, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti



POVEZANOST RADA


Projekti:
EK-KF-KK.01.1.1.01.0002 - Bioprospecting Jadranskog mora (Jerković, Igor; Dragović-Uzelac, Verica; Šantek, Božidar; Čož-Rakovac, Rozelinda; Kraljević Pavelić, Sandra; Jokić, Stela, EK ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Davor Oršolić (autor)

Avatar Url Tomislav Šmuc (autor)

Avatar Url Višnja Stepanić (autor)

Poveznice na cjeloviti tekst rada:

27hskiki.hkd.hr

Citiraj ovu publikaciju:

Stepanić, Višnja; Oršolić, Davor; Šmuc, Tomislav
(Re)purposing starts virtually by predictive machine-learning models // 27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts / Marković, Dean ; Meštrović, Ernest ; Namjesnik, Danijel ; Tomašić, Vesna (ur.).
Zagreb: Hrvatsko kemijsko društvo, 2021. str. 16-16 (pozvano predavanje, recenziran, sažetak, znanstveni)
Stepanić, V., Oršolić, D. & Šmuc, T. (2021) (Re)purposing starts virtually by predictive machine-learning models. U: Marković, D., Meštrović, E., Namjesnik, D. & Tomašić, V. (ur.)27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts.
@article{article, author = {Stepani\'{c}, Vi\v{s}nja and Or\v{s}oli\'{c}, Davor and \v{S}muc, Tomislav}, year = {2021}, pages = {16-16}, keywords = {Cheminformatics, Herbicides, Kinases, Machine learning}, title = {(Re)purposing starts virtually by predictive machine-learning models}, keyword = {Cheminformatics, Herbicides, Kinases, Machine learning}, publisher = {Hrvatsko kemijsko dru\v{s}tvo}, publisherplace = {Veli Lo\v{s}inj, Hrvatska} }
@article{article, author = {Stepani\'{c}, Vi\v{s}nja and Or\v{s}oli\'{c}, Davor and \v{S}muc, Tomislav}, year = {2021}, pages = {16-16}, keywords = {Cheminformatics, Herbicides, Kinases, Machine learning}, title = {(Re)purposing starts virtually by predictive machine-learning models}, keyword = {Cheminformatics, Herbicides, Kinases, Machine learning}, publisher = {Hrvatsko kemijsko dru\v{s}tvo}, publisherplace = {Veli Lo\v{s}inj, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font