Pregled bibliografske jedinice broj: 1159865
(Re)purposing starts virtually by predictive machine-learning models
(Re)purposing starts virtually by predictive machine-learning models // 27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts / Marković, Dean ; Meštrović, Ernest ; Namjesnik, Danijel ; Tomašić, Vesna (ur.).
Zagreb: Hrvatsko kemijsko društvo, 2021. str. 16-16 (pozvano predavanje, recenziran, sažetak, znanstveni)
CROSBI ID: 1159865 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
(Re)purposing starts virtually by predictive
machine-learning models
Autori
Stepanić, Višnja ; Oršolić, Davor ; Šmuc, Tomislav
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
27th Croatian Meeting of Chemists and Chemical Engineers and 5th Symposium Vladimir Prelog : Book of Abstracts
/ Marković, Dean ; Meštrović, Ernest ; Namjesnik, Danijel ; Tomašić, Vesna - Zagreb : Hrvatsko kemijsko društvo, 2021, 16-16
Skup
27. hrvatski skup kemičara i kemijskih inženjera (27HSKIKI)
Mjesto i datum
Veli Lošinj, Hrvatska, 05.10.2021. - 08.10.2021
Vrsta sudjelovanja
Pozvano predavanje
Vrsta recenzije
Recenziran
Ključne riječi
Cheminformatics, Herbicides, Kinases, Machine learning
Sažetak
The cheapest, fastest and efficient way to find active compounds for biological targets, novel biological activities for compounds “in shelves” or to reveal targets for discovered natural products, is to test compounds virtually by using proper in silico approaches and/or models at the beginning. The predictive machine learning (ML) model developed for specific (bio)activity can be applied for prioritizing assays for in vitro testing of compounds and their (re)purposing. The two ML models which may shed light on potential biological activities for compounds, will be presented. They have been developed by using publicly available datasets and are incorporated within virtual modular platforms for detecting potential phytotoxic molecules and kinase inhibitors.
Izvorni jezik
Engleski
Znanstvena područja
Kemija, Biologija, Poljoprivreda (agronomija), Interdisciplinarne biotehničke znanosti
POVEZANOST RADA
Projekti:
EK-KF-KK.01.1.1.01.0002 - Bioprospecting Jadranskog mora (Jerković, Igor; Dragović-Uzelac, Verica; Šantek, Božidar; Čož-Rakovac, Rozelinda; Kraljević Pavelić, Sandra; Jokić, Stela, EK ) ( CroRIS)
Ustanove:
Institut "Ruđer Bošković", Zagreb