ࡱ>  {{f|h|r|t|||p̀΀ހF&ڃ܃̋.ȍD&ȼȰȰȼȰȰȰȕȰȰȰȼ5mH 0JCJH*OJQJmH  j0J6CJOJQJmH 0J6CJOJQJmH 0J5CJOJQJmH 0JCJOJQJmH  CJH*mH 6CJmHmH 6CJ 6CJmH  jmCJmH CJmH  CJH*mH 8 &P . A!"#$%IMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF THE QUEUING SYSTEM FUNCTIONING Zdenka Zenzerovi Faculty of Maritime Studies at Rijeka Studentska 2, 51000 Rijeka, Croatia Telephone: 051/ 338-411;E-mail:  HYPERLINK mailto:zenIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF THE QUEUING SYSTEM FUNCTIONING Zdenka Zenzerovi Faculty of Maritime Studies at Rijeka Studentska 2, 51000 Rijeka, Croatia Telephone: 051/ 338-411;E-mail:  HYPERLINK mailto:zenzerov@pfri.hr zenzerov@pfri.hr Marija Marinovi Faculty of Philosophy Omladinska 14, 51000 Rijeka, Croatia Telephone: 051/345-034; E-mail: marinm@pefri.hr Abstract. This paper analyses the impact of service place specialization on efficiency of the queuing system operation. Using the queuing theory, it was proved that introducing service place specialization is only justified if the service rate of specialized service places is greater than those in multipurpose places. Specialization index has been introduced, showing the increase required of service rate, i.e., it is used to calculate the minimal capacity of specialized service places where the average number of customers in the queue and average time a customer spends in the queue will equal to the multipurpose service places. The method presented is useful in planning and organizing queuing system operation and it represents the basis when making decision as to whether to organize as specialized or multipurpose service place system. The results of analysis of the service place specialization impact are illustrated through example of actual organization of a counter service. Key words: queuing theory, service place specialization, specialization index, counter service INTRODUCTION The efficiency of a queuing system can be determined by the time customer spends in a system and unoccupancy of a service place. The values of these indicators are influenced by the number of service places and service rate of particular service place, considering given or expected number of customers. Depending on the service type offered to customers, service place could be multipurpose (universal) or specialized. Since in real life service places within a queuing system often offer various services, the main issue in organizing such a process is to decide whether service place should be multipurpose or specialized. The decision on service place type results in positive and negative impacts on queuing system functioning. In systems with specialized service places, customer is served at a service place specialized for a particular service; on the other hand, if service is organized with multipurpose service places, each service place handles any customer. If service rates of multipurpose and specialized service places are equal, it can be expected that the average number of customers and time of customers spend in queue would be greater/longer for specialized service places. So called specialization index has been introduced in this research, and it is used to determine limit value of service rate for a specialized service places. This value is used to equalize number of customers and time of customers in a queue for multipurpose system and it justifies implementation of specialized service places. The aim of this research was to present planning method and organization of queuing system considering the type of service place. The presented method was illustrated through a real life counter-service organization. 2. COMPARISON OF INDICATORS OF QUEUING SYSTEM FUNCTIONING FOR MULTIPURPOSE AND SPECIALIZED SERVICE PLACES In accordance with the defined objective, the following task has been defined: to explore whether number of customers waiting in a queue per time unit at all service places will be equal or significantly different, assuming that service places are multipurpose or specialized. By using the queuing theory, it is necessary to compare expected number of customers for a queuing system having a number of specialized service places with expected number of customers for a queuing system having an appropriate number of multipurpose service places. Assuming that two service places, each with respective given values for EMBED Equation  and EMBED Equation , i.e. having a number of customers arriving to the service place and a number of customers that can be served in an observed time unit at a given place, average number of customers in the queue waiting to be served at both places shall be equal to the sum of customers waiting at each service place   (1) If service places are of the same capacity EMBED Equation , and if customer arrival rates at both places are about equal EMBED Equation , average number of customers in the queue can be calculated as follows  (2) By analogy, formula for determining average number of customers in the queue can be derived for S service places operating independently (assuming the same customer arrival rate EMBED Equation  and service rate EMBED Equation )  (3) If service places differ by customer arrival and service rates, formula (3) can be nevertheless used, provided that EMBED Equation  and EMBED Equation  are assigned average values. If service places are not specialized, then each service place is not considered separately, but as an S-channel system of M/M/S/( type, where average number of customers waiting in the queue is calculated using the following formula  (4) where P0 is probability that all service places are unoccupied, i.e. probability that are no customers in a system. According to task defined in this paper it is necessary to compare formulas EMBED Equation  and EMBED Equation   (5) Since in single service place system EMBED Equation , where EMBED Equation  is traffic intensity, the demonstration continues by comparing formulas  (6) If formula (6) is to be greater than 0, the following inequation must be met  (7) i.e.,  (8) EMBED Equation.2 EMBED Equation.2 EMBED Equation.2 . (9) Value of EMBED Equation  in formula (9) is greater than 1, and EMBED Equation  is also greater than 1, since  (10) consequently, the left side of inequation (9) is greater than 1, meaning that EMBED Equation  is greater than EMBED Equation , which was to be proved. Since EMBED Equation , it is concluded that average number of customers and time a customer spends in the queue are considerably lower in one system with S service places, i.e., in multipurpose service place system than in S systems with one service place, i.e., specialized service places, whether customer arrival rates are equal for particular service place or not. SPECIALIZATION INDEX The previous part of this paper assumes that service rates for specialized service places equal to multipurpose places service rates. However, in real life, specialized service places should be more efficient than multipurpose service places since they are better equipped for providing intended services, and in that case the difference in number of customers in the queue will not be so high as mentioned above. In order to equalize specialized and multipurpose service places, considering number of customers in the queue, it is necessary to calculate service rate, using above proof, for specialized service places where number of customers in the queue will be equal (and not greater as shown) to multipurpose service places service rate. Border value of service rate for specialized service places is the solution of relation EMBED Equation , where A = S(LQ(1) and B = 1(LQ(S) Considering above assumptions, service rate ((1) for specialized places is calculated using relation S1(LQ(1) = 1(LQ(S2), (16)  (11) where: EMBED Equation  - multipurpose service place rate ks - specialization index. Specialization index for EMBED Equation  service places is defined as follows: , (12) which leads to  (13) By analogy for  , (14) and for EMBED Unknown EMBED Unknown. (15) Above relations show that specialization index depends on EMBED Equation , EMBED Equation  and number of service places EMBED Equation , where ( represents customer arrival rate to specialized service place. Relations (12)(15) are valid when the number of service places in multipurpose system equals to the number of specialized service places. However, in reality, it is possible that implementation of specialization increases number of service places as compared to the multipurpose system. In such a case, specialization index ks is calculated using relation S1(LQ(1) = 1(LQ(S2), (16) where S1 stands for the number of specialized service places, S2 for the number of service places in one multipurpose system. Such, for S1= 4 and S2= 3, the following relation has been derived for specialization index EMBED Equation.2. (17) Defining value of ks becomes burdensome for higher values of S so, for convenience, it is suggested to enter mentioned values in a table. An example can be found in Table 1 for S = 2, ( = 0.1, 0.9 and ( = 0.2,1.0. Table 1. Specialization index value (ks) for two service places according to values of EMBED Equation.2 and EMBED Equation.2 ctIdIDE DISK TYPE46 ManufacturerGENERIC  DeviceTypeInt13CurrentDriveLetterAssignmentCD @HardwareIDGENERIC  0.10.20.30.40.50.60.70.80.91.00.11.5001.8082.0662.2932.5002.6912.8693.0373.1970.21.3051.5001.6631.8081.9412.0662.1822.2930.31.2261.3751.5001.6111.7131.8081.8980.41.1811.3051.4081.5001.5841.6630.51.1521.2591.3481.4271.5000.61.1311.2261.3051.3750.71.1151.2011.2730.81.1031.1810.91.093 The empty part of the table does not contain calculated values of ks because ratio between EMBED Equation  and EMBED Equation  indicates the instability of a queuing system. Service rate for specialized service places can be calculated by multiplying ks (from Table 1.) (depending of EMBED Equation  and EMBED Equation ) by service rate of the multipurpose service place. If the service rate of a specialized place equals to EMBED Equation , then the number of customers in the queue will equal to that in system having multipurpose service places; if it is greater than EMBED Equation , queue will be smaller and vice versa. Shown method can be used in planning service place types considering the service purpose. Of course, the final decision on specialization of service places should consider equipment required for specialized and multipurpose service places. 4. CASE STUDY - ORGANIZATION OF COUNTER SERVICE 4.1. Problem description The analysis of the service place specialization impact to queuing system efficiency was performed for an existing organization of Police Department counter service the offering following services: Counter 1 - Issuing driving licenses and license plate Counter 2 - Issuing ID and passports Counter 3 - Registration/deregistration of residence. Statistical observation in period from January 2, 2002 to May 2, 2002. produced data on total number of customers requiring one or more of above services or arrived at a counter, as follows: Counter 1 - 6588 customers Counter 2 - 1356 customers Counter 3 - 1019 customers. Considering working hours of six hour a day, the average number of customers per day and hour respectively is as follows: Counter 1 - 77.51 customers/day; 12.91765 customers/hour Counter 2 - 15.95 customers/day; 2.65882 customers/hour Counter 3 - 11.99 customers/day; 1.99804 customers/hour. It was also established that average processing time for any counter was 7.5 minutes. The objective is to make business decision that would enable optimal counter operation, i.e., working schedule providing customers with services in the shortest possible time and reducing clerks' idle time to minimum. 4.2. Problem definition On the basis of above, it is possible to define the problem. Number of customer requiring a service at any counter is a random variable as well as processing time. Adequate statistical test revealed that distribution of number of customers and processing time in observed time unit follow a Poisson distribution, meaning that counter service could be considered as a queuing system. Counter service place system is queuing system of M/M/S/( type, i.e. having an infinite time a customer spent in queue with the queue discipline on the FIFO basis (first in-first out). According to the task set, it is possible to make following business decisions: Organize multipurpose (universal) counters, meaning that any customer can be served at any counter Organize specialized counters, i. e., customers can be served at particular counter depending on service type required. Comparison of multipurpose and specialized counter indicators will yield an optimal solution of the observed problem. 4.3. Analysis and discussion of the solution Since the counter service is defined as a queuing system, the problem has been solved using the queuing theory. On the basis of adequate formulas, counter operation indicators have been calculated for one system of M/M/3/( type and four systems of M/M/1/( type and shown in Table 2. Table 2. Comparison of Police Department counter service operation indicators by counter type No.IndicatorUnitMultipurpose service placesSpecialized service places1.2.3.1.Arrival rate (()cust./hour17.5745112.917652.658821.998042.Service rate (()cust./hour88883.Traffic intensity (()-2.196811.614710.332350.249754.Number of service places (S)counter32115.Utilization system coefficient ((/S)-0.732270.807350.332350.249756.Average number of customers in the queue (LQ)customer1.478453.022840.165440.083147.Average number of customers in the system (L)customer3.675274.637550.497800.332908.Average time a customer spends in the system (WQ)hour0.08413 (5.05 min)0.23400 (14.04 min)0.06223 (3.73 min)0.04161 (2.5 min)9.Average time a customer spends in the system (W)hour0.20913 (12.55 min)0.35901 (21.54 min)0.18723 (11.23 min)0.16612 (9.97 min)10.Probability that all service places are idles (P0)%8,1910.6666.7675.02 Results in Table 2. show that expected number of customers in the queue is 1.47845 and 3.27142 for multipurpose and specialized counters, respectively. This example supports the proof as per Chapter 2. of the paper, i.e., if the service rates are equal, the queue is greater in specialized than in universal service places. The same conclusion refers to the time customers spend in the queue as well as to busy/idle state of a counter. At last, the fact that cannot be neglected, is that specialization requires increased number of counters, specifically, four counter in this example. However, it is fair to assume that a specialized counter should have higher service rate, and according to relation (17) in Chapter 3. of the paper it comes out that for S = 3/4, (where the first number stands for number of counter in multipurpose system and the second for number of specialized counters), ( = 17.57451/4 = 4.39363, ( = 8, specialization index is ks = 1.21878 which requires specialized counter service rate of (1 = 9.75024 customers/hour. Thus, under given condition, the implementation of specialized counter in Police Department counter service is justified only if the service rate is at least 9.75024 customers/hour; therefore, service time should be reduced to 6.15 minutes, or service rate should be increased by 21.9%. Considering the service type offered at particular counter and proportion of human work required in providing a service, it is not always possible to reduce such service time. However, assuming that in this example is possible to increase service rate to 9.75024 customers/hour, the indicator of expected number of customer in a queue is favorable, but increasing number of counters would severely impact particular counter idle time from 10.66% to 75.02% of total working hours, which is unacceptable in terms of economic considerations. Due to the above, the combinations of multipurpose (universal) and specialized counter service organization have been considered as follows: Specialized counters for driving licenses (S1 and S2) and multipurpose counters for IDs and registration/deregistration of residence (S3 and S4) Specialized counters for driving licenses (S1 and S2) and multipurpose counter for IDs and registration/deregistration of residence (S3) Specialized counter for driving licenses (S1) and multipurpose counter for IDs and registration/deregistration of residence (S3). Counter operation indicators as per above variants are shown in Table 3. Table 3. Police Department counters operation indicators for counter combinations No.IndicatorUnitMultipurpose counter S3 Multipurpose counters S3 i S4 1.(cust./hour4.656864.656862.(cust./hour883.(-0.582110.582114.Scounter125.(/S-0.582110.291056.LQcounter0.810850.053887.Lcounter1.392960.635988.WQhour0.29912 (17.95 min)0.13657 (8.19 min)9.Wsat0.17412 (10.45 min)0.01157 (0.69 min)10.P0%41.7954.91 Variants 1 and 2 (due to rather large number of customers) that there will be two counters for driving license (S1 and S2), while other services will be handled either at counters S3 or S4, or only at counter S3, thus reducing the number of counters to three. Variant 3 resulted from experience to date, where driving license were only handled at one counter. It is practicable if, on the basis of past number of customers as noted during observed period, average processing time ranges from 4 to 4.6 minutes, e.g. (=15 customers/hour. Table 4. shows results in comparison of indicators for proposed counter service variants. Table 4. Comparison of indicators for combined counter service variants IndicatorVariant 1.Variant 2.Variant 3. (( = 15)S432LQ2.122.886.15P037.6%27.47%27.8% On the basis of results shown in Table 4. and Table 2., one of the following business decisions should be made: Organize counter service as one system containing three multipurpose counters. Organize counter service with two counters, one specialized for driving licenses and the other multipurpose counter for other services. 5. CONCLUSION In a queuing system, service places can be multipurpose or specialized. If both of service places have the same service rate, than the average number of customers and the time a customer spends in the queue are greater in specialized service places than in multipurpose ones. Using the queuing theory, above conclusion has been proven by comparing the number of customers in a queue for S systems with one specialized service place to one system with S multipurpose service places. However, considering better equipment of specialized service places, their service rate should be higher; specialization index is a number showing the smallest increase of service rate required in order to justify the implementation of specialized service places, i.e., to equal the system efficiency indicators that of multipurpose system. The presented method, recommended for planning of service place types considering its purpose, is illustrated through an actual counter service in a Police Department. REFERENCES D. Barkovi, Operacijska istra~ivanja, Ekonomski fakultet, Osijek, 2001. R. Bronson, Operations Research, McGraw-Hill, 1982. T. Pogny - Z. Zenzerovi, On the Parameter Shift Influence to the Total Waiting Time in M/M/S/( Queueing System, II, Proceeding of the 16th International Conference on Information Technology Interfaces, ITI 94, Pula, University Computing Center, Zagreb,1994,p.p. 397-402. Z.Zenzerovi, Optimizacijski modeli planiranja kapaciteta morskih luka, Ekonomski fakultet, dokt. disertacija, Sveu iliate u Rijeci, Rijeka, 1995. Z. Zenzerovi, Kapaciteti uslu~nih mjesta u funkciji efikasnosti sustava masovnog opslu~ivanja, Zbornik radova Ekonomskog fakulteta Rijeka, Rijeka, 1996. I. }upanovi, M. Gjumbir, Racionalizacija procesa izdavanja prijevoznih karata na autobusnom kolodvoru, Fakultet prometnih znanosti, Zagreb, 1978.    4o p q { | Y׹Ź㴩ݴujCJEHUmH jUCJUVmH jCJEHUmH j48A UVmH jCJUmH 0JCJOJQJmH CJmH 56CJmH 6mH  6CJmH 0J6CJOJQJmH  5CJmH  5CJmH mH B*>*0JB*jU jU5mH -*r"$Fr p q  S$ $ & FnW$$$$$$*r"$Fr p q  SY3?~iop]^de VW^_flm0129:NOPef!"C#D#^#_#`# !  [SY3?!$pM !!!p   $$ $ $T  BnW$$%&'fgvwxy+,}~56E޶ޢޞޒ}tijCJEHUmH j:EHUmH jQ@A CJUVmHjEHUmH jQ@A CJUVmH6mH j0CJEHUmH j6 EHUmH jQ@A CJUVmHj< EHUmH jQ@A CJUVmH jUmH mH jCJEHUmH CJmHCJmH jyEHUmH '~iop]^de VW! >    ($$ !  $ / !$pM $!$EFGHMN]^_`ijnovwx12ABCDIJYZ[\]^_eDzঝznjR@A CJUVmHjm EHUmH CJmH jTEHUmH j[R@A CJUVmHj<EHUmH j*F*N*V*^*f*h*p*r*~**************+++(+4+@+L+N+V+X+Z+\+h+t+++++++++++++++++,%  #!"^#########$$$$$.$/$0$1$6$7$F$G$J$K$\$]$j$k$l$m$p$q$~$$$$$$$$$$$$xoj(dEHUmH j X@A CJUVmH jaEHUjK'B CJUV j$_EHUjK'B CJUV jCJU jQ\EHU jeZEHUCJjWEHUmH CJmHjUEHUmH j>SEHUmH jAA CJUVmH jUmH mH CJmH  CJH*mH +$$.$/$6$7$H$I$S$T$n$$$e%f%&$6$#$#$  #$t#$  #$#$t#  &B     #$$ !0 &$$$$$$$ % %%%%%$%%%&&&&&&&&&&&&&&&&&&&&'''('q'r's'{'|'}'''''''''''(((((((( jmmH jEiCJEHUjK'B UV jU6mH  jH*6H*mH  jlmH jgEHUmH j=4A CJUVmH jeEHUmH j X@A CJUVmH jUmH mH <&&&''''(([)\)***&*.*6*>*F*N*V*$$ %$$ 9r $$ u$H$wY$$$  $ $@    B((((((((-).)>)?)@)A)F)G)W)X)Y)Z)*,,,,,, - - - ---!-"-#-$------vkjStCJEHUmH jrCJUVmH j/qCJEHUmH joCJUVmH jCJUmH  CJH*mH mHjn6CJEHUmH jy#&A 6CJUVmH jtl6CJEHUmH jz#&A 6CJUVmH j6CJUmH 6CJH*mH  6CJmH CJmH mH )V*^*f*h*p*r*~*****d_______$$$$Tl4     <4 ,|$           $$ **********++f$$Tl4     <4 ,|$           $$ ++(+4+@+L+N+V+X+Z+\+h+f$$Tl4     <4 ,|$$$ h+t+++++++++++f$$Tl4     <4 ,|$$$ +++++++,, , , ,f$$Tl4     <4 ,|$$$ ,, , , , ,,,,,!,',-,.,2,3,4,5,6,7,8,>,D,J,P,Q,U,V,W,X,Y,Z,[,\,b,h,n,o,s,t,u,v,w,x,y,z,{,,,,,,,,,,,,,,,,,,(/)/000L0M0f0g0.1e111122222 ""# R , ,,,,,!,',-,.,2,3,f$$Tl4     <4 ,|$$$ 3,4,5,6,7,8,>,D,J,P,Q,U,fx$$Tl4     <4 ,|$$$ U,V,W,X,Y,Z,[,\,b,h,n,o,fd$$Tl4     <4 ,|$$$ o,s,t,u,v,w,x,y,z,{,,,$$ ,,,,,,,,,,,kPfffffffff$$$$Tl4     <4 ,|$ ,,,,,,(/)/00_]XXUUU$$$$Tl4     <4 ,|$$$$$ ----------W.X.g.h.i.j....../)/*/00*0+0L0M0e012*5B566669L9%:(:+:,:-:F:I:L:M:s:::ܼܧܙܙܓܙ jmH 6mH 5mH  5CJmH mH j~CJEHUmH jAA UVmHj)|CJEHUmH jAA UVmHjzCJEHUmH jyCJUVmH CJmH jCJUmH jwwCJEHUmH juCJUVmH 400L0M0f0g0.1e111122222N33333O4)5*5B5$$"$"$$$$#$$2N33333O4)5*5B5C56{7|77/88899L9M99i:j::::::::Ŀ|wpib[T          "#?@mn]    IJbc=>B5C56{7|77/88899L9M99i:j::::::::;$$$$$$h$ & F$$:;;;;;;;;";#;&;7;B;K;T;\;d;e;h;y;;;;;;;;;}vohaZVOH                $  '(  0  8  A  J  U  f  ij  m  p  s  t  u  v  wx  ;;;;;;;;";8$$$$R$$Tl4r `       ";#;&;7;B;K;T;\;d;$$$h$$Tl4֞ 5         :4;5;v;w;;;;;< <!<"<t<u<v<<<.=/=0===@>A>B>^>AAAABBWBXBYBlFmFsFtFFFFFFFGGWGXGGGGG0HxHHHHHHHHHHHHHHHHHI̸̼̼̼̼̼̼̼̼̼̼̼̼̼6mH H*mH  jmmH  jlmH mH  CJH*mH 6CJH*mH  6CJmH  jrCJmH  jmCJmH  jlCJmH CJmH Hd;e;h;y;;;;;;$$$f$$Tl֞ 5         ;;;;;;;;;;;;;;;;;$$$f$$Tl֞ 5  ;;;;;;;;;;;;;;;;;;<$<&<.<6<><F<G<J<x<Ľzsle^ZSL  B  EF  N  V  ^  f  h  z                                ;;;;;<$<&<.<6<><F<G<J<x<<<0l$f$$Tl֞ 5  $$x<<<<<<<<<<<<<<<=2=7=?=J=R=^=f=q=y====Ľzsle^WSL        &  .  :  B  M  U  Z                            <<<<<<<<<<<<<=2=7=?=l$f$$Tl֞ 5  $$?=J=R=^=f=q=y===========$$f$$Tl֞ 5  $$=========> > >>D>F>K>Q>W>]>^>_>`>@tBCEDE@FF|wrmhc^YR L G,-./  5  ;  A  F  H  {                      ==> > >>D>F>K>Q>W>]>D$f$$Tl֞ 5  $$ ]>^>_>`>@tBCEDE@FFZGGG&H'H$ & F$$f$$Tl֞ 5         FZGGG&H'HyHzH{HHHHHHHHHHHHHHHHHHHHHž{tpib[TMI                                    ef2    'HyHzH{HHHHHHHHHHHHHHT$$Tl4r#(             $$$$HHHHHHHHIIITX`P$$Tlr#(   $$P$$Tlr#(         HIII IIIII"I$I&I'I*I.I0I8I@IAIDIGIOIWI_I`IcIeImIuIĽ}vohd]VOH    '  )  ,-  5  =  E  H  KL  T  \  ^  b  ef  h  j  r  t  wx          IIIIII&I'I*I+I,I-I@IAIDIEIFI_I`IcIdI}I~IIIIIIIIIIIIIIIjJkJqJrJJJJJJJKKvLLLLLLLLLLLMM MMMiNjN߰0JCJOJQJmH  CJH*mH 6CJmH6CJ 6CJmH  jmCJmH  CJH*mH CJmH H*mH  6H*mH 6mH CJmH mH  jrmH BI IIIII"I$I&I'I*I.I0I8I@IAIDIGIOIWIHh|P$$Tlr#(   $$WI_I`IcIeImIuI}I~IIIIIIIIx$x$P$$Tlr#(   $$uI}I~IIIIIIIIIIIIIIIIIIIIIIIIJLlLmLL}vohda^[XUR z                                        IIIIIIIIIIQXP$$Tlr#(   $$$x$P$$Tlr+' 0   IIIIIIIIJLlLmLLLLLL$$ X$$$$P$$Tlr#(        $$LLLLLLLLLLLLLLLMMM MMMMMMMMgNhNiNxNyNOO^P_P|ytoje`[$.$$$$$#$%    mno  u  |                              "LLLLLLLLLLLMMM MM$L\'$$Tl     T #$$E$$Tl    \T #$$MMMMMMMgNhNiNxNyNOO^P_PQQRRRR$$$ & F$ & F$'$$Tl     T #$$zerov@pfri.hr zenzerov@pfri.hr Marija Marinovi Faculty of Philosophy Omladinska 14, 51000 Rijeka, Croatia Telephone: 051/345-034; E-mail: marinm@pefri.hr Abstract. This paper analyses the impact of service place specialization on efficiency of the q_PQQRRRRRRnSSUWRXxYzY|Y~YYYYǽ$$c  $  $  $  $   $ $$*$+$,$-$$$-ueuing system operation. Using the queuing theory, it was proved that introducing service place specialization is only justified if the service rate of specialized service places is greater than those in multipurpose places. Specialization index has been introduced, showing the increase required of service rate, i.e., it is used to calculate the minimal capacity of specialized service places where the average number of customers in the queue and average time a customer spends in the queue will equal to the DyK zenzerov@pfri.hryK 0mailto:zenzerov@pfri.hrDd<  C A2'ח } `!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd|B  S A? 2BEQU9ygFa`!YBEQU9ygFT@ `W0'xcdd``Vgd``beV dX,XĐ )ɁSRcgb x@؀깡jx|K2B* R .͔ `W01d++&104\ F\L 8@|Vj&2n Mp~ *_‡f#AClb(ΟŌwclE W&00aI+phae8ACwLLJ% ̀iSDd B  S A? 2,4CWNa`!,4CWNa`xJAg._g>DDEHRbaF,!੐*I  VVbb#H'2&<  ,2/:b2έLCI`r~V e^L 6KYK'4UO*hd%0p&h_Xv{d+V9K'20&>'(8q[{In JFV`9}Y9'yqDԐ{>/*JnU܃ɐA`0kgݝyUܒ|EYǀwRY8-yiؖ<=7 aURo8C+`x'F2^L j0BR-þ{ DdTB  S A? 2dט6>R: MP@ `!8ט6>R: MP@ 0= XJxUPKJA}U3M2(u5p@rEL.a mdv9.\u}Ne!VLtWUk>4vXPY"cdtb̀Rwy_sʣ֑DO)VlR<)xk-F2.¶F+ʚ*q5j|wtPwEzws7}6]wP5Q5gd)]wޖb;lSt/;DdTB  S A? 2dAܖs @z `!8Aܖs   XJxUPAJP}3I b .)؝B/P PhZ.G…+oнx^wf{濙!4o цk+Kd sΘ+e*Mյ8<8~38-B$C7fia8Y=7/[kdm1QN3_ {$o/i^Wɬ75ŷ;̇|Foo|)M]?,.: O}-Uws 2B`]!Q\%)6) g?j;[DdB  S A? 2e> `[/Y~rt`!e> `[/Y~r `gxKK@g&+)|BAC g'+h  M[hAzZG(^ċC?@^ųqg6.!am;/`uQ` xe.[ڄ('HQI7J]W .D| <3e==swƍ5EWQ?x\ ^%XF}i;֊]nv3l? ^k/y9S,<=omultipurpose service places. The method presented is useful in planning and organizing queuing system operation and it represents the basis when making decision as to whether to organize as specialized or multipurpose service place system. The results of analysis of the service place specialization impact are illustrated through example of actual organization of a counter service. Key words: queuing theory, service place specialization, specialization index, counter service INTRODUCTION The efficiency of a queuing system can be determined by the time customer spends in a system and unoccupancy of a service place. The values of these indicators are influenced by the number of service places and service rate of particular service place, considering given or expected number of customers. Depending on the service type offered to customers, service place could be multipurpose (universal) or specialized. Since in real life service places within a queuing system often offer various services, the main issue in organizing such a process is to decide whether service place should be multipurpose or specialized. The decision on service place type results in positive and negative impacts on queuing system functioning. In systems with specialized service places, customer is served at a service place specialized for a particular service; on the other hand, if service is organized with multipurpose service places, each service place handles any customer. If service rates of multipurpose and specialized service places are equal, it can be expected that the average number of customers and time of customers spend in queue would be greater/longer for specialized service places. So called specialization index has been introduced in this research, and it is used to determine limit value of service rate for a specialized service places. This value is used to equalize number of customers and time of customers in a queue for multipurpose system and it justifies implementation of specialized service places. The aim of this research was to present planning method and organization of queuing system considering the type of service place. The presented method was illustrated through a real life counter-service organization. 2. COMPARISON OF INDICATORS OF QUEUING SYSTEM FUNCTIONING FOR MULTIPURPOSE AND SPECIALIZED SERVICE PLACES In accordance with the defined objective, the following task has been defined: to explore whether number of customers waiting in a queue per time unit at all service places will be equal or significantly different, assuming that service places are multipurpose or specialized. By using the queuing theory, it is necessary to compare expected number of customers for a queuing system having a number of specialized service places with expected number of customers for a queuing system having an appropriate number of multipurpose service places. Assuming that two service places, each with respective given values for EMBED Equation  and EMBED Equation , i.e. having a number of customers arriving to the service place and a number of customers that can be served in an observed time unit at a given place, average number of customers in the queue waiting to be served at both places shall be equal to the sum of customers waiting at each service place   (1) If service places are of the same capacity EMBED Equation , and if customer arrival rates at both places are about equal EMBED Equation , average number of customers in the queue can be calculated as follows  (2) By analogy, formula for determining average number of customers in the queue can be derived for S service places operating independently (assuming the same customer arrival rate EMBED Equation  and service rate EMBED Equation )  (3) If service places differ by customer arrival and service rates, formula (3) can be nevertheless used, provided that EMBED Equation  and EMBED Equation  are assigned average values. If service places are not specialized, then each service place is not considered separately, but as an S-channel system of M/M/S/( type, where average number of customers waiting in the queue is calculated using the following formula  (4) where P0 is probability that all service places are unoccupied, i.e. probability that are no customers in a system. According to task defined in this paper it is necessary to compare formulas EMBED Equation  and EMBED Equation   (5) Since in single service place system EMBED Equation , where EMBED Equation  is traffic intensity, the demonstration continues by comparing formulas  (6) If formula (6) is to be greater than 0, the following inequation must be met  (7) i.e.,  (8) EMBED Equation.2 EMBED Equation.2 EMBED Equation.2 . (9) Value of EMBED Equation  in formula (9) is greater than 1, and EMBED Equation  is also greater than 1, since  (10) consequently, the left side of inequation (9) is greater than 1, meaning that EMBED Equation  is greater than EMBED Equation , which was to be proved. Since EMBED Equation , it is concluded that average number of customers and time a customer spends in the queue are considerably lower in one system with S service places, i.e., in multipurpose service place system than in S systems with one service place, i.e., specialized̋vތ&ZLDFh>$$$$$ & F $$ service places, whether customer arrival rates are equal for particular service place or not. SPECIALIZATION INDEX The previous part of this paper assumes that service rates for specialized service places equal to multipurpose places service rates. However, in real life, specialized service places should be more efficient than multipurpose service places since they are better equipped for providing intended services, and in that case the difference in number of customers in the queue will not be so high as mentioned above. In order to equalize specialized and multipurpose service places, considering number of customers in the queue, it is necessary to calculate service rate, using above proof, for specialized service places where number of customers in the queue will be equal (and not greater as shown) to multipurpose service places service rate. Border value of service rate for specialized service places is the solution of relation EMBED Equation , where A = S(LQ(1) and B = 1(LQ(S) . Considering above assumptions, service rate ((1) for specialized places is calculated using relation  (11) where: EMBED Equation  - multipurpose service place rate ks - specialization index. Specialization index for EMBED Equation  service places is defined as follows , (12) which leads to  (13) By analogy for  , (14) and for EMBED Unknown EMBED Unknown. (15) Above relations show that specialization index depends on EMBED Equation , EMBED Equation  and number of service places EMBED Equation , where ( represents customer arrival rate to specialized service place. Relations (12) (15) are valid when the number of service places in multipurpose system equals to the number of specialized service places. However, in reality, it is possible that implementation of specialization increases number of service places as compared to the multipurpose system. In such a case, specialization index ks is calculated using relation S1(LQ(1) = 1(LQ(S2), (16) where S1 stands for the number of specialized service places and S2 for the number of service places in one multipurpose system. Such, for S1= 4 and S2= 3, the following relation has been derived for specialization index EMBED Equation.2. (17) Defining value of ks becomes burdensome for higher values of S so, for convenience, it is suggested to enter mentioned values in a table. An example can be found in Table 1 for S = 2, ( = 0.1, & 0.9 and ( = 0.2,& 1.0. Table 1. Specialization index value (ks) for two service places according to values of EMBED Equation.2 and EMBED Equation.2  0.10.20.30.40.50.60.70.80.91.00.11.5001.8082.0662.2932.5002.6912.8693.0373.1970.21.3051.5001.6631.8081.9412.0662.1822.2930.31.2261.3751.5001.6111.7131.8081.8980.41.1811.3051.4081.5001.5841.6630.51.1521.2591.3481.4271.5000.61.1311.2261.3051.3750.71.1151.2011.2730.81.1031.1810.91.093 The empty part of the table does not contain calculated values of ks because ratio between EMBED Equation  and EMBED Equation  indicates the instability of a queuing system. Service rate for specialized service places can be calculated by multiplying ks (from Table 1.) (depending of EMBED Equation  and EMBED Equation ) by service rate of the multipurpose service place. If the service rate of a specialized place equals to EMBED Equation , then the number of customers in the queue will equal to that in system having multipurpose service places; if it is greater than EMBED Equation , queue will be smaller to that in system with multipurpose service places, and vice versa. Shown method can be used in planning service place types considering the service purpose. Of course, the final decision on specialization of service places should consider equipment required for specialized and multipurpose service places. 4. CASE STUDY - ORGANIZATION OF COUNTER SERVICE 4.1. Problem description The analysis of the service place specialization impact to queuing system efficiency was performed for an existing organization of Police Department counter service the offering following services: Counter 1 - Issuing driving licenses and license plate Counter 2 - Issuing ID and passports Counter 3 - Registration/deregistration of residence. Statistical observation in period from January 2, 2002 to May 2, 2002. produced data on total number of customers requiring one or more of above services or arrived at a counter, as follows: Counter 1 - 6588 customers Counter 2 - 1356 customers Counter 3 - 1019 customers. Considering working hours of six hour a day, the average number of customers per day and hour respectively is as follows: Counter 1 - 77.51 customers/day; 12.91765 customers/hour Counter 2 - 15.95 customers/day; 2.65882 customers/hour Counter 3 - 11.99 customers/day; 1.99804 customers/hour. It was also established that average processing time for any counter was 7.5 minutes. The objective is to make business decision that would enable optimal counter operation, i.e., working schedule providing customers with services in the shortest possible time and reducing clerks' idle time to minimum. 4.2. Problem definition On the basis of above, it is possible to define the problem. Number of customer requiring a service at any counter is a random variable as well as processing time. Adequate statistical test revealed that distribution of number of customers and processing time in observed time unit follow a Poisson distribution, meaning that counter service could be considered as a queuing system. Counter service place system is queuing system of M/M/S/( type, i.e. having an infinite time a customer spent in queue with the queue discipline on the FIFO basis (first in-first out). According to the task set, it is possible to make following business decisions: Organize multipurpose (universal) counters, meaning that any customer can be served at any counter Organize specialized counters, i. e., customers can be served at particular counter depending on service type required. Comparison of multipurpose and specialized counter indicators will yield an optimal solution of the observed problem. 4.3. Analysis and discussion of the solution Since the counter service is defined as a queuing system, the problem has been solved using the queuing theory. On the basis of adequate formulas, counter operation indicators have been calculated for one system of M/M/3/( type and four systems of M/M/1/( type and shown in Table 2. Table 2. Comparison of Police Department counter service operation indicators by counter type No.IndicatorUnitMultipurpose service placesSpecialized service places1.2.3.1.Arrival rate (()cust./hour17.5745112.917652.658821.998042.Service rate (()cust./hour88883.Traffic intensity (()-2.196811.614710.332350.249754.Number of service places (S)counter32115.Utilization system coefficient ((/S)-0.732270.807350.332350.249756.Average number of customers in the queue (LQ)customer1.478453.022840.165440.083147.Average number of customers in the system (L)customer3.675274.637550.497800.332908.Average time a customer spends in the system (WQ)hour0.08413 (5.05 min)0.23400 (14.04 min)0.06223 (3.73 min)0.04161 (2.5 min)9.Average time a customer spends in the system (W)hour0.20913 (12.55 min)0.35901 (21.54 min)0.18723 (11.23 min)0.16612 (9.97 min)10.Probability that all service places are idles (P0)%8,1910.6666.7675.02 Results in Table 2. show that expected number of customers in the queue is 1.47845 and 3.27142 for multipurpose and specialized counters, respectively. This example supports the proof as per Chapter 2. of the paper, i.e., if the service rates are equal, the queue is greater in specialized than in universal service places. The same conclusion refers to the time customers spend in the queue as well as to busy/idle state of a counter. At last, the fact that cannot be neglected, is that specialization requires increased number of counters, specifically, four counter in this example. However, it is fair to assume that a specialized counter should have higher service rate, and according to relation (17) in Chapter 3. of the paper it comes out that for S = 3/4, (where the first number stands for number of counter in multipurpose system and the second for number of specialized counters), ( = 17.57451/4 = 4.39363, ( = 8, specialization index is ks = 1.21878 which requires specialized counter service rate of (1 = 9.75024 customers/hour. Thus, under given condition, the implementation of specialized counter in Police Department counter service is justified only if the service rate is at least 9.75024 customers/hour; therefore, service time should be reduced to 6.15 minutes, or service rate should be increased by 21.9%. Considering the service type offered at particular counter and proportion of human work required in providing a service, it is not always possible to reduce such service time. However, assuming that in this example is possible to increase service rate to 9.75024 customers/hour, the indicator of expected number of customer in a queue is favorable, but increasing number of counters would severely impact particular counter idle time from 10.66% to 75.02% of total working hours, which is unacceptable in terms of economic considerations. Due to the above, the combinations of multipurpose (universal) and specialized counter service organization have been considered as follows: Specialized counters for driving licenses (S1 and S2) and multipurpose counters for IDs and registration/deregistration of residence (S3 and S4) Specialized counters for driving licenses (S1 and S2) and multipurpose counter for IDs and registration/deregistration of residence (S3) Specialized counter for driving licenses (S1) and multipurpose counter for IDs and registration/deregistration of residence (S3). Counter operation indicators as per above variants are shown in Table 3. Table 3. Police Department counters operation indicators for counter combinations No.IndicatorUnitMultipurpose counter S3 Multipurpose counters S3 i S4 1.(cust./hour4.656864.656862.(cust./hour883.(-0.582110.582114.Scounter125.(/S-0.582110.291056.LQcounter0.810850.053887.Lcounter1.392960.635988.WQhour0.29912 (17.95 min)0.13657 (8.19 min)9.Wsat0.17412 (10.45 min)0.01157 (0.69 min)10.P0%41.7954.91 Variants 1 and 2 (due to rather large number of customers) that there will be two counters for driving license (S1 and S2), while other services will be handled either at counters S3 or S4, or only at counter S3, thus reducing the number of counters to three. Variant 3 resulted from experience to date, where driving license were only handled at one counter. It is practicable if, on the basis of past number of customers as noted during observed period, average processing time ranges from 4 to 4.6 minutes, e.g. (=15 customers/hour. Table 4. shows results in comparison of indicators for proposed counter service variants. Table 4. Comparison of indicators for combined counter service variants IndicatorVariant 1.Variant 2.Variant 3. (( = 15)S432LQ2.122.886.15P037.6%27.47%27.8% On the basis of results shown in Table 4. and Table 2., one of the following business decisions should be made: Organize counter service as one system containing three multipurpose counters. Organize counter service with two counters, one specialized for driving licenses and the other multipurpose counter for other services. 5. CONCLUSION In a queuing system, service places can be multipurpose or specialized. If both of service places have the same service rate, than the average number of customers and the time a customer spends in the queue are greater in specialized service places than in multipurpose ones. Using the queuing theory, above conclusion has been proven by comparing the number of customers in a queue for S systems with one specialized service place to one system with S multipurpose service places. However, considering better equipment of specialized service places, their service rate should be higher; specialization index is a number showing the smallest increase of service rate required in order to justify the implementation of specialized service places, i.e., to equal the system efficiency indicators that of multipurpose system. The presented method, recommended for planning of service place types considering its purpose, is illustrated through an actual counter service in a Police Department. REFERENCES D. Barkovi, Operacijska istra~ivanja, Ekonomski fakultet, Osijek, 2001. R. Bronson, Operations Research, McGraw-Hill, 1982. T. Pogny - Z. Zenzerovi, On the Parameter Shift Influence to the Total Waiting Time in M/M/S/( Queueing System, II, Proceeding of the 16th International Conference on Information Technology Interfaces, ITI 94, Pula, University Computing Center, Zagreb,1994,p.p. 397-402. Z.Zenzerovi, Optimizacijski modeli planiranja kapaciteta morskih luka, Ekonomski fakultet, dokt. disertacija, Sveu iliate u Rijeci, Rijeka, 1995. Z. Zenzerovi, Kapaciteti uslu~nih mjesta u funkciji efikasnosti sustava masovnog opslu~ivanja, Zbornik radova Ekonomskog fakulteta Rijeka, Rijeka, 1996. I. }upanovi, M. Gjumbir, Racionalizacija procesa izdavanja prijevoznih karata na autobusnom kolodvoru, Fakultet prometnih znanosti, Zagreb, 1978. Y][5I7 yI3X| ZZg29V&0K/S]"xQxz(cx, r̡~& ۹)Ie'Ñ5xzy[ Q1 X\߼cDdB  S A? 2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$_DdB   S A ?  2ܩlg)C--`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/ml%##Ozp!'6Et32 }QeDdB   S A?  2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ږDd B   S A ?  2ݹM*mgPMmU`!ݹM*mgPMmU̬9xO@߽BRm&dPbI qp0bl l:lb4NY޵4x͵s}?zeP`h!Y!>1u]2FJvc rk\5 .[W|ni&\je EZ )Q1üø YCܺI;?=3&4#۪$Wz.`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u;SDd|B  S A ? 2Ǽ-Y|#8|V_`!WǼ-Y|#8|V>`e 0%xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W;H&׀W]kA?60n, Mne$VIp7eZ`}|7 ~hI9 L] RzΟv-4 `PcdbR ,.Iexf:uSDdB  S A? 2{<ŏW&n oW `!O<ŏW&n o0 ؛1xOKA߼l4Yc4jҦsiCBBcj x= ^<'~C Xp;of3I;a6g{v-|V>1<3z2_;uv, Tk##p8W @ :jXXaq(8#⫭X}ﺫ`Vo3>L>' uA]\$1/c^g&(P{H>v.u.t}ZMS?0_,i/+(j|*V 'Y~2N]ykPrݰFF*ټiEIVn\g3&O&__*F4y~cMȦHDs2_ *SI/q'Ou>d/1ScFMiqVt⹠)/\|äi;\3Qգ+#ŷH k\cf1ZXoǩDd@<  C A2P|s7y nR,#`!$|s7y nR, xcdd``cd``beV dX,$XĐ +7XRYaj`e~35[0d P@penR~^](;Vded( #6 *o.#duF9(0b2I $37X/\!(?71N飘xDF&2rc0X'ć`Q=cdbR ,.Ie`Ew3X?@r Equation@ rHP LaserJet 4/4MH Ma METAFILEPICT|> p .1  ` & MathType@ Symbol-!r"System-5Dd<  C A2gw|. JP"Mn#Q8'`!gw|. JP"Mn#Q`!x51 @EL\%$b K-P!`a0h<0^0Յa7)4s6hu$KT~L\wlGȱٷǭo*`Xۇ:܅rӗ>Oѻ0:b t׶bK~Y;a DdHB  S A? 2ƛyYj(`!ƛyYj@%9]xkAIblccֈE[miBŃ^*@ ƪ-J?E/"%zEmKn/6qgfwI un{3$B=OI6A6 p `argC/v`tgB Ỏ.lQng'3 wl7ƒ 8"A;f)w*˲a_vϗ}Y=.|-\,^$Zu޼\}bNfR Q?eAϊK~[`,)0_ͩ69P;t*;t1w跨2`|J:M@O/*dB{[VgKiՕ,0ؤ[I"}az nLweF=&9Hq,= ܄o~_٣4 jd nzݟQܻrG'~=#Yƫ^KVfbH8cCSy﹯y|yF7![)$/9JU9gD?oVP"t=ٽ?^qD痃ApZa ZBF6: %_&8DdB  S A? 22M}K,`!2M}ߌ` xJAgg/_`qTB*Ԃ"&`ψ X,|YYZYZ,}&eIrBc7B 4bj,KMWA+[bWJ(B42صNҋZ/@ G񋲞te&d:uivo=~:ηWh.7"^>1͖z0gDdB  S A? 2N- X1LWv-'T-1`!N- X1LWv-'TXsxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03@ d3DdB  S A? 2Dxv~b(`r{Ey2`!qDxv~b(`r{E@'<]?xkA߼Mfun5TkwڦD"^Uڂ&^DO"=x_ ^=ɻV6ծc3g{y3ofo(>0Ɋ7/2zqzz< 3J5;r&!A 梵#iࡐ'>X\\Yw "OEXgZ{Xdk\~}[Sþ<Fp$. ݬtn&RY+>=_ET92ʑ" (f0a ?ǵ9g96}X#hz*, eho_A{GUa 􊡩EKբnjH^HH-KWΌt}leU5B<푳f4TsگL'(g|4$y͌惄3yknoy4{7ԿRQj:BiNFviLK2mvP5OI#=+ӶrNLO{β?fQ]'ɾ`TѮ<\C.Dq~]eDdB  S A? 2,b;L \5`!,b;L \Xqxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03^8Dd B  S A? 2SkTbl _c~,7`!vSkTbl _cj18DxAkA{idK7M&AJcEЀ/BRcTjB)Z.DzY< D ׶83owI:a7{޼Y [J<=W<,HnWYj8,3:GG âwj`F+Q -./Zk \`C qyb#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_Holm`$wz2߼~:62H^>T*i?OUTT|Q;Kagʇ(8W: [ A]XM5LM3Nw"/a5 Equation@ XHP LaserJet 4/4MH Ma METAFILEPICT`N< u .1  @ & MathType DTimes New Roman-!X"System-Dd<  C A2 :xGv1.m?`!:xGv1.m@Rx51 @E%$ZE ;o`aZئX"*$"r o'"  +t/?<%PQ2P\%`Mv VYyU %Rs^R5w\s[k{K7<;yS> F}xh:E۪(mkQ}RDdXhB  S A? 2a>/h|YJ HXD=UA`!5>/h|YJ HXD@|xcdd`` @bD"L1JE `x0 Yjl R A@v n`f` UXRYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5LC`!-WQ! ᵁo,F=!`h(3x=OAg 㘏 E "A "i [QDV, c+ B(5KhHaQ"J"I+)ݻխd}g!"/x<'^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *Ii[It#Qn[kQ,S PrG N => ͭrnODd|B  S A? 2 h:V'BLa^;F`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u^T%DdhB  S A? 2Ra,YeG%kSH`!cRa,YeG%4@4 |1xcdd``bd``beV dX,XĐ Ɂ A?d- πjx|K2B* R. `W01d++&104\ F\ Śp~8 g5`I? E90O@ 3t1$FK4&n e(aI9 L] RzΟ v-4Ĺ(v0o(121)W2Cw33XQt Dd|B   S A? 2sMd|⥗b@tOxJ`!GMd|⥗b@t` 0xQAJP}3I .ܩ^V-J@$A<t)\{ƕ`~d C .iH5Y;_lB\Mvh&{L]ϹW :@"Ă_{: @-i7_ i Lŗƃ]4;VdedpdL&x `6W&@| D@2_Ŝ0q[qaVt0&FM`-w 0py{Ĥ\Y\Nf:/ Dd$hB  S A? 2tŦ/8FP4S`!HŦ/8F@E |xcdd`` @bD"L1JE `x Yjl R A@2 N`c`x UXRYvo`0L`A $37X/\!(?71]<6j`dg)ց%Al 5p0T 1`_ +ss`.w+Hi.Ŀo 1@sAC `@ ;F&&\w~bf@dnJ  Equation@ m E METAFILEPICT=|=, p .1  `  & MathType@Symbol-!m"System-Dd<  C A2- ^W1ڛRLxV`!- ^W1ڛRLx `Ƚ!xcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd<  C A257oB73"bX`! 7oB73"``:!xcdd``> @bD"L1JE `x,56~ĒʂT؞L 1L`^ $37X/\!(?71d.PH+22]2)Q$9@+ss >? cbNb"#D#{8=padbR ,.Ie`Cw3XͲ,Dd B   S A ? 2SG^R2 Eʨh'Z`!SG^R2 Eʨh!x/CAgfҧ6ơH_!p'$M|=DԩKp8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd B   S A ?  2Vl3S`\`!Vl3S`ŴPt]x;KAgf/9saac @s񑠤E?U,m,D$O V*;5cw! a=FlY <9Q :Ny j[IKk2:$HJnKVܕiAL6bs̵;&ԊӨ^G%>E;nO4W2FGig*ҤV־žϔZh_Ҭ}PD,VR-mopW#Y~sglo8j!xK#O2.9|;Gs+YCr_ubu%]4x v&98xk;4v~VXBDHa! :&뼙aV2ϛM7ZiQ aj91-Uz y#3w$!I(ѶjkOUH3W׻~^ `̠oN L4*38ZDJc>~H>~|7rv*6[ _Vǻz lr@VHEi#>[eJj)_^񇒸fs 9=C\>˝ɝůYߙ!^|}Teǃ |2Su2& eOsG߹TmQN47ۀqEjof~$UC' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ڿDdB  S A? 2) #o0U yl!l`! #o0U yl!`!Hx5O @]#` v@A?{so|phϮJV50*)tR -X'B$]T,Ts/vak&xAp!cDUjxbt.%sEa;C'Ren.퓘۳C3)?/߽DRPI,/DdB  S A? 2N̈{uin`!mN̈{Ì0];xMHQͮcJfe!hM JPK)Vx̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[^k!O~Sf،ʥMRdF5t޷DDh1ɗIZ~/@%MtJk,,A@cݪ.Q#uriJdxOC8QU<84bɖ Q}Dd<  C A2"CUWzq`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufOC5 Equation@ l7) ct # METAFILEPICT=Y=+ p .1    & MathType @Symbol-!l"System-Dd<  C A2'ח }Sv`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufٖ Equation@ l7) ct # METAFILEPICT=Y=! p .1    & MathType @Symbol-!l"System-Dd<  C A2'ח }|`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDdDhB  S A? 2`>447 ؤbI(.k$F@> =p| @B*,<>@BV< R  \^02PRTV`b۽ɽ紩ᴠujCJEHUmH jCJUVmH jCJEHUmH j48A UVmH jCJUmH 0JCJOJQJmH CJmH 5mH 56CJmH 6mH  6CJmH 0J6CJOJQJmH  5CJmH  5CJmH mH B*>*0JB*j*U jU+>@BB,| <  \^nW$$ $ & FnW$$$$ !  $ / !$pM $!$!$pM !!!p   $$ $ $T  BJLjlnpxz<>@Bfh޶ޢޞޒ}tijCJEHUmH jdEHUmH jQ@A CJUVmHjEHUmH jQ@A CJUVmH6mH jZCJEHUmH j` EHUmH jQ@A CJUVmHjf EHUmH jQ@A CJUVmH jUmH mH jCJEHUmH CJmHCJmH jEHUmH ' &P . A!"#$%IMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF THE QUEUING SYSTEM FUNCTIONING Zdenka Zenzerovi Faculty of Maritime Studies at Rijeka Studentska 2, 51000 Rijeka, Croatia Telephone: 051/ 338-411;E-mail:  HYPERLINK mailto:zenzerov@pfri.hr zenzerov@pfri.hr Marija Marinovi Faculty of Philosophy Omladinska 14, 51000 Rijeka, Croatia Telephone: 051/345-034; E-mail: marinm@pefri.hr Abstract. This paper analyses the impact of service place specialization on efficiency of the queuing system operation. Using the queuing theory, it was proved that introducing service place specialization is only justified if the service rate of specialized service places is greater than those in multipurpose places. Specialization index has been introduced, showing the increase required of service rate, i.e., it is used to calculate the minimal capacity of specialized service places where the average number of customers in the queue and average time a customer spends in the queue will equal to the multipurpose service places. The method presented is useful in planning and organizing queuing system operation and it represents the basis when making decision as to whether to organize as specialized or multipurpose service place system. The results of analysis of the service place specialization impact are illustrated through example of actual organization of a counter service. Key words: queuing theory, service place specialization, specialization index, counter service INTRODUCTION The efficiency of a queuing system can be determined by the time customer spends in a system and unoccupancy of a service place. The values of these indicators are influenced by the number of service places and service rate of particular service place, considering given or expected number of customers. Depending on the service type offered to customers, service place could be multipurpose (universal) or specialized. Since in real life service places within a queuing system often offer various services, the main issue in organizing such a process is to decide whether service place should be multipurpose or specialized. The decision on service place type results in positive and negative impacts on queuing system functioning. In systems with specialized service places, customer is served at a service place specialized for a particular service; on the other hand, if service is organized with multipurpose service places, each service place handles any customer. If service rates of multipurpose and specialized service places are equal, it can be expected that the average number of customers and time of customers spend in queue would be greater/longer for specialized service places. So called specialization index has been introduced in this research, and it is used to determine limit value of service rate for a specialized service places. This value is used to equalize number of customers and time of customers in a queue for multipurpose system and it justifies implementation of specialized service places. The aim of this research was to present planning method and organization of queuing system considering the type of service place. The presented method was illustrated through a real life counter-service organization. 2. COMPARISON OF INDICATORS OF QUEUING SYSTEM FUNCTIONING FOR MULTIPURPOSE AND SPECIALIZED SERVICE PLACES In accordance with the defined objective, the following task has been defined: to explore whether number of customers waiting in a queue per time unit at all service places will be equal or significantly different, assuming that service places are multipurpose or specialized. By using the queuing theory, it is necessary to compare expected number of customers for a queuing system having a number of specialized service places with expected number of customers for a queuing system having an appropriate number of multipurpose service places. Assuming that two service places, each with respective given values for EMBED Equation  and EMBED Equation , i.e. having a number of customers arriving to the service place and a number of customers that can be served in an observed time unit at a given place, average number of customers in the queue waiting to be served at both places shall be equal to the sum of customers waiting at each service place   (1) If service places are of the same capacity EMBED Equation , and if customer arrival rates at both places are about equal EMBED Equation , average number of customers in the queue can be calculated as follows  (2) By analogy, formula for determining average number of customers in the queue can be derived for S service places operating independently (assuming the same customer arrival rate EMBED Equation  and service rate EMBED Equation )  (3) If service places differ by customer arrival and service rates, formula (3) can be nevertheless used, provided that EMBED Equation  and EMBED Equation  are assigned average values. If service places are not specialized, then each service place is not considered separately, but as an S-channel system of M/M/S/( type, where average number of customers waiting in the queue is calculated using the following formula  (4) where P0 is probability that all service places are unoccupied, i.e. probability that are no customers in a system. According to task defined in this paper it is necessary to compare formulas EMBED Equation  and EMBED Equation   (5) Since in single service place system EMBED Equation , where EMBED Equation  is traffic intensity, the demonstration continues by comparing formulas  (6) If formula (6) is to be greater than 0, the following inequation must be met  (7) i.e.,  (8) EMBED Equation.2 EMBED Equation.2 EMBED Equation.2 . (9) Value of EMBED Equation  in formula (9) is greater than 1, and EMBED Equation  is also greater than 1, since  (10) consequently, the left side of inequation (9) is greater than 1, meaning that EMBED Equation  is greater than EMBED Equation , which was to be proved. Since EMBED Equation , it is concluded that average number of customers and time a customer spends in the queue are considerably lower in one system with S service places, i.e., in multipurpose service place system than in S systems with one service place, i.e., specialized service places, whether customer arrival rates are equal for particular service place or not. SPECIALIZATION INDEX The previous part of this paper assumes that service rates for specialized service places equal to multipurpose places service rates. However, in real life, specialized service places should be more efficient than multipurpose service places since they are better equipped for providing intended services, and in that case the difference in number of customers in the queue will not be so high as mentioned above. In order to equalize specialized and multipurpose service places, considering number of customers in the queue, it is necessary to calculate service rate, using above proof, for specialized service places where number of customers in the queue will be equal (and not greater as shown) to multipurpose service places service rate. Border value of service rate for specialized service places is the solution of relation EMBED Equation , where A = S(LQ(1) and B = 1(LQ(S) . Considering above assumptions, service rate ((1) for specialized places is calculated using relation  (11) where: EMBED Equation  - multipurpose service place rate ks - specialization index. Specialization index for EMBED Equation  service places is defined as follows , (12) which leads to  (13) By analogy for  , (14) and for EMBED Unknown EMBED Unknown. (15) Above relations show that specialization index depends on EMBED Equation , EMBED Equation  and number of service places EMBED Equation , where ( represents customer arrival rate to specialized service place. Relations (12) (15) are valid when the number of service places in multipurpose system equals to the number of specialized service places. However, in reality, it is possible that implementation of specialization increases number of service places as compared to the multipurpose system. In such a case, specialization index ks is calculated using relation S1(LQ(1) = 1(LQ(S2), (16) where S1 stands for the number of specialized service places and S2 for the number of service places in one multipurpose system. Such, for S1= 4 and S2= 3, the following relation has been derived for specialization index EMBED Equation.2. (17) Defining value of ks becomes burdensome for higher values of S so, for convenience, it is suggested to enter mentioned values in a table. An example can be found in Table 1 for S = 2, ( = 0.1, & 0.9 and ( = 0.2,& 1.0. Table 1. Specialization index value (ks) for two service places according to values of EMBED Equation.2 and EMBED Equation.2  0.10.20.30.40.50.60.70.80.91.00.11.5001.8082.0662.2932.5002.6912.8693.0373.1970.21.3051.5001.6631.8081.9412.0662.1822.2930.31.2261.3751.5001.6111.7131.8081.8980.41.1811.3051.4081.5001.5841.6630.51.1521.2591.3481.4271.5000.61.1311.2261.3051.3750.71.1151.2011.2730.81.1031.1810.91.093 The empty part of̋.ȍD& @B*,<>@BV< ||56CJmH 6mH  6CJmH 0J6CJOJQJmH  5CJmH  5CJmH mH B*>*0JB*j?U jU5mH 0JCJH*OJQJmH  j0J6CJOJQJmH 0J6CJOJQJmH 0J5CJOJQJmH 0JCJOJQJmH /̋vތ&ZLDFh>$$$$$ & F $$ the table does not contain calculated values of ks because ratio between EMBED Equation  and EMBED Equation  indicates the instability of a queuing system. Service rate for specialized service places can be calculated by multiplying ks (from TablerdDocWord.Document.89qࡱࡱ> jNxNOP?P@PRRR&SSS TTTTTTVV@BV{56CJmH 6mH  6CJmH 0J6CJOJQJmH  5CJmH  5CJmH mH B*>*0JB*jU jU5mH 0JCJH*OJQJmH  j0J6CJOJQJmH 0J6CJOJQJmH 0JCJOJQJmH 0J5CJOJQJmH 0 &P . A!"#$%IMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF THE QUEUING SYSTEM FUNCTIONING Zdenka Zenzerovi Faculty of Maritime Studies at Rijeka Studentska 2, 51000 Rijeka, Croatia Telephone: 051/ 338-411;E-mail:  HYPERLINK mailto:zenzerov@pfri.hr zenzerov@pfri.hr Marija Marinovi Faculty of Philosophy Omladinska 14, 51000 Rijeka, Croatia Telephone: 051/345-034; E-mail: marinm@pefri.hr Abstract. This paper analyses the impact of service place specialization on efficiency of the queuing system operation. Using the queuing theory, it was proved that introducing service place specialization is only justified if the service rate of specialized service places is greater than those in multipurpose places. Specialization index has been introduced, showing the increase required of service rate, i.e., it is used to calculate the minimal capacity of specialized service places where the average number of customers in the queue and average time a customer spends in the queue will equal to the multipurpose service places. The method presented is useful in planning and organizing queuing system operation and it represents the basis when making decision as to whether to organize as specialized or multipurpose service place system. The results of analysis of the service place specialization impact are illustrated through example of actual organization of a counter service. Key words: queuing theory, service place specialization, specialization index, counter service INTRODUCTION The efficiency of a queuing system can be determined by the time customer spends in a system and unoccupancy of a service place. The values of these indicators are influenced by the number of service places and service rate of particular service place, considering given or expected number of customers. Depending on the service type offered to customers, service place could be multipurpose (universal) or specialized. Since in real life service places within a queuing system often offer various services, the main issue in organizing such a process is to decide whether service place should be multipurpose or specialized. The decision on service place type results in positive and negative impacts on queuing system functioning. In systems with specialized service places, customer is served at a service place specialized for a particular service; on the other hand, if service is organized with multipurpose service places, each service place handles any customer. If service rates of multipurpose and specialized service places are equal, it can be expected that the average number of customers and time of customers spend in queue would be greater/longer for specialized service places. So called specialization index has been introduced in this research, and it is used to determine limit value of service rate for a specialized service places. This value is used to equalize number of customers and time of customers in a queue for multipurpose system and it justifies implementation of specialized service places. The aim of this research was to present planning method and organization of queuing system considering the type of service place. The presented method was illustrated through a real life counter-service organization. 2. COMPARISON OF INDICATORS OF QUEUING SYSTEM FUNCTIONING FOR MULTIPURPOSE AND SPECIALIZED SERVICE PLACES In accordance with the defined objective, the following task has been defined: to explore whether number of customers waiting in a queue per time unit at all service places will be equal or significantly different, assuming that service places are multipurpose or specialized. By using the queuing theory, it is necessary to compare expected number of customers for a queuing system having a number of specialized service places with expected number of customers for a queuing system having an appropriate number of multipurpose service places. Assuming that two service places, each with respective given values for EMBED Equation  and EMBED Equation , i.e. having a number of customers arriving to the service place and a number of customers that can be served in an observed time unit at a given place, average number of customers in the queue waiting to be served at both places shall be equal to the sum of customers waiting at each service place   (1) If service places are of the same capacity EMBED Equation , and if customer arrival rates at both places are about equal EMBED Equation , average number of customers in the queue can be calculated as follows  (2) By analogy, formula for determining average number of customers in the queue can be derived for S service places operating independently (assuming the same customer arrival rate EMBED Equation  and service rate EMBED Equation )  (3) If service places differ by customer arrival and service rates, formula (3) can be nevertheless used, provided that EMBED Equation  and EMBED Equation  are assigned average values. If service places are not specialized, then each service place is not considered separately, but as an S-channel system of M/M/S/( type, where average number of customers waiting in the queue is calculated using the following formula  (4) where P0 is probability that all service places are unoccupied, i.e. probability that are no customers in a system. According to task defined in this paper it is necessary to compare formulas EMBED Equation  and EMBED Equation   (5) Since in single service place system EMBED Equation , where EMBED Equation  is traffic intensity, the demonstration continues by comparing formulas  (6) If formula (6) is to be greater than 0, the following inequation must be met  (7) i.e.,  (8) EMBED Equation.2 EMBED Equation.2 EMBED Equation.2 . (9) Value of EMBED Equation  in formula (9) is greater than 1, and EMBED Equation  is also greater than 1, since  (10) consequently, the left side of inequation (9) is greater than 1, meaning that EMBED Equation  is greater than EMBED Equation , which was to be proved. Since EMBED Equation , it is concluded that average number of customers and time a customer spends in the queue are considerably lower in one system with S service places, i.e., in multipurpose service place system than in S systems with one service place, i.e., specializedRRRnSSUWRXxYzY|Y~YYYYYYLDFh>$$$$$ & F $$ service places, whether customer arrival rates are equal for particular service place or not. SPECIALIZATION INDEX The previous part of this paper assumes that service rates for specialized service places equal to multipurpose places service rates. However, in real life, specialized service places should be more efficient than multipurpose service places since they are better equipped for providing intended services, and in that case the difference in number of customers in the queue will not be so high as mentioned above. In order to equalize specialized and multipurpose service places, considering number of customers in the queue, it is necessary to calculate service rate, using above proof, for specialized service places where number of customers in the queue will be equal (and not greater as shown) to multipurpose service places service rate. Border value of service rate for specialized service places is the solution of relation EMBED Equation , where A = S(LQ(1) and B = 1(LQ(S) . Considering above assumptions, service rate ((1) for specialized places is calculated using relation  (11) where: EMBED Equation  - multipurpose service place rate ks - specialization index. Specialization index for EMBED Equation  service places is defined as follows , (12) which leads to  (13) By analogy for  , (14) and for EMBED Unknown EMBED Unknown. (15) Above relations show that specialization index depends on EMBED Equation , EMBED Equation  and number of service places EMBED Equation , where ( represents customer arrival rate to specialized service place. Relations (12) (15) are valid when the number of service places in multipurpose system equals to the number of specialized service places. However, in reality, it is possible that implementation of specialization increases number of service places as compared to the multipurpose system. In such a case, specialization index ks is calculated using relation S1(LQ(1) = 1(LQ(S2), (16) where S1 stands for the number of specialized service places and S2 for the number of service places in one multipurpose system. Such, for S1= 4 and S2= 3, the following relation has been derived for specialization index EMBED Equation.2. (17) Defining value of ks becomes burdensome for higher values of S so, for convenience, it is suggested to enter mentioned values in a table. An example can be found in Table 1 for S = 2, ( = 0.1, & 0.9 and ( = 0.2,& 1.0. Table 1. Specialization index value (ks) for two service places according to values of EMBED Equation.2 and EMBED Equation.2  0.10.20.30.40.50.60.70.80.91.00.11.5001.8082.0662.2932.5002.6912.8693.0373.1970.21.3051.5001.6631.8081.9412.0662.1822.2930.31.2261.3751.5001.6111.7131.8081.8980.41.1811.3051.4081.5001.5841.6630.51.1521.2591.3481.4271.5000.61.1311.2261.3051.3750.71.1151.2011.2730.81.1031.1810.91.093 The empty part of the table does not contain calculated values of ks because ratio between EMBED Equation  and EMBED Equation  indicates the instability of a queuing system. Service rate for specialized service places can be calculated by multiplying ks (from Table 1.) (depending of EMBED Equation  and EMBED Equation ) by service rate of the multipurpose service place. If the service rate of a specialized place equals to EMBED Equation , then the number of customers in the queue will equal to that in system having multipurpose service places; if it is greater than EMBED Equation , queue will be smaller to that in system with multipurpose service places, and vice versa. Shown method can be used in planning service place types considering the service purpose. Of course, the final decision on specialization of service places should consider equipment required for specialized and multipurpose service places. 4. CASE STUDY - ORGANIZATION OF COUNTER SERVICE 4.1. Problem description The analysis of the service place specialization impact to queuing system efficiency was performed for an existing organization of Police Department counter service the offering following services: Counter 1 - Issuing driving licenses and license plate Counter 2 - Issuing ID and passports Counter 3 - Registration/deregistration of residence. Statistical observation in period from January 2, 2002 to May 2, 2002. produced data on total number of customers requiring one or more of above services or arrived at a counter, as follows: Counter 1 - 6588 customers Counter 2 - 1356 customers Counter 3 - 1019 customers. Considering working hours of six hour a day, the average number of customers per day and hour respectively is as follows: Counter 1 - 77.51 customers/day; 12.91765 customers/hour Counter 2 - 15.95 customers/day; 2.65882 customers/hour Counter 3 - 11.99 customers/day; 1.99804 customers/hour. It was also established that average processing time for any counter was 7.5 minutes. The objective is to make business decision that would enable optimal counter operation, i.e., working schedule providing customers with services in the shortest possible time and reducing clerks' idle time to minimum. 4.2. Problem definition On the basis of above, it is possible to define the problem. Number of customer requiring a service at any counter is a random variable as well as processing time. Adequate statistical test revealed that distribution of number of customers and processing time in observed time unit follow a Poisson distribution, meaning that counter service could be considered as a queuing system. Counter service place system is queuing system of M/M/S/( type, i.e. having an infinite time a customer spent in queue with the queue discipline on the FIFO basis (first in-first out). According to the task set, it is possible to make following business decisions: Organize multipurpose (universal) counters, meaning that any customer can be served at any counter Organize specialized counters, i. e., customers can be served at particular counter depending on service type required. Comparison of multipurpose and specialized counter indicators will yield an optimal solution of the observed problem. 4.3. Analysis and discussion of the solution Since the counter service is defined as a queuing system, the problem has been solved using the queuing theory. On the basis of adequate formulas, counter operation indicators have been calculated for one system of M/M/3/( type and four systems of M/M/1/( type and shown in Table 2. Table 2. Comparison of Police Department counter service operation indicators by counter type No.IndicatorUnitMultipurpose service placesSpecialized service places1.2.3.1.Arrival rate (()cust./hour17.5745112.917652.658821.998042.Service rate (()cust./hour88883.Traffic intensity (()-2.196811.614710.332350.249754.Number of service places (S)counter32115.Utilization system coefficient ((/S)-0.732270.807350.332350.249756.Average number of customers in the queue (LQ)customer1.478453.022840.165440.083147.Average number of customers in the system (L)customer3.675274.637550.497800.332908.Average time a customer spends in the system (WQ)hour0.08413 (5.05 min)0.23400 (14.04 min)0.06223 (3.73 min)0.04161 (2.5 min)9.Average time a customer spends in the system (W)hour0.20913 (12.55 min)0.35901 (21.54 min)0.18723 (11.23 min)0.16612 (9.97 min)10.Probability that all service places are idles (P0)%8,1910.6666.7675.02 Results in Table 2. show that expected number of customers in the queue is 1.47845 and 3.27142 for multipurpose and specialized counters, respectively. This example supports the proof as per Chapter 2. of the paper, i.e., if the service rates are equal, the queue is greater in specialized than in universal service places. The same conclusion refers to the time customers spend in the queue as well as to busy/idle state of a counter. At last, the fact that cannot be neglected, is that specialization requires increased number of counters, specifically, four counter in this example. However, it is fair to assume that a specialized counter should have higher service rate, and according to relation (17) in Chapter 3. of the paper it comes out that for S = 3/4, (where the first number stands for number of counter in multipurpose system and the second for number of specialized counters), ( = 17.57451/4 = 4.39363, ( = 8, specialization index is ks = 1.21878 which requires specialized counter service rate of (1 = 9.75024 customers/hour. Thus, under given condition, the implementation of specialized counter in Police Department counter service is justified only if the service rate is at least 9.75024 customers/hour; therefore, service time should be reduced to 6.15 minutes, or service rate should be increased by 21.9%. Considering the service type offered at particular counter and proportion of human work required in providing a service, it is not always possible to reduce such service time. However, assuming that in this example is possible to increase service rate to 9.75024 customers/hour, the indicator of expected number of customer in a queue is favorable, but increasing number of counters would severely impact particular counter idle time from 10.66% to 75.02% of total working hours, which is unacceptable in terms of economic considerations. Due to the above, the combinations of multipurpose (universal) and specialized counter service organization have been considered as follows: Specialized counters for driving licenses (S1 and S2) and multipurpose counters for IDs and registration/deregistration of residence (S3 and S4) Specialized counters for driving licenses (S1 and S2) and multipurpose counter for IDs and registration/deregistration of residence (S3) Specialized counter for driving licenses (S1) and multipurpose counter for IDs and registration/deregistration of residence (S3). Counter operation indicators as per above variants are shown in Table 3. Table 3. Police Department counters operation indicators for counter combinations No.IndicatorUnitMultipurpose counter S3 Multipurpose counters S3 i S4 1.(cust./hour4.656864.656862.(cust./hour883.(-0.582110.582114.Scounter125.(/S-0.582110.291056.LQcounter0.810850.053887.Lcounter1.392960.635988.WQhour0.29912 (17.95 min)0.13657 (8.19 min)9.Wsat0.17412 (10.45 min)0.01157 (0.69 min)10.P0%41.7954.91 Variants 1 and 2 (due to rather large number of customers) that there will be two counters for driving license (S1 and S2), while other services will be handled either at counters S3 or S4, or only at counter S3, thus reducing the number of counters to three. Variant 3 resulted from experience to date, where driving license were only handled at one counter. It is practicable if, on the basis of past number of customers as noted during observed period, average processing time ranges from 4 to 4.6 minutes, e.g. (=15 customers/hour. Table 4. shows results in comparison of indicators for proposed counter service variants. Table 4. Comparison of indicators for combined counter service variants IndicatorVariant 1.Variant 2.Variant 3. (( = 15)S432LQ2.122.886.15P037.6%27.47%27.8% On the basis of results shown in Table 4. and Table 2., one of the following business decisions should be made: Organize counter service as one system containing three multipurpose counters. Organize counter service with two counters, one specialized for driving licenses and the other multipurpose counter for other services. 5. CONCLUSION In a queuing system, service places can be multipurpose or specialized. If both of service places have the same service rate, than the average number of customers and the time a customer spends in the queue are greater in specialized service places than in multipurpose ones. Using the queuing theory, above conclusion has been proven by comparing the number of customers in a queue for S systems with one specialized service place to one system with S multipurpose service places. However, considering better equipment of specialized service places, their service rate should be higher; specialization index is a number showing the smallest increase of service rate required in order to justify the implementation of specialized service places, i.e., to equal the system efficiency indicators that of multipurpose system. The presented method, recommended for planning of service place types considering its purpose, is illustrated through an actual counter service in a Police Department. REFERENCES D. Barkovi, Operacijska istra~ivanja, Ekonomski fakultet, Osijek, 2001. R. Bronson, Operations Research, McGraw-Hill, 1982. T. Pogny - Z. Zenzerovi, On the Parameter Shift Influence to the Total Waiting Time in M/M/S/( Queueing System, II, Proceeding of the 16th International Conference on Information Technology Interfaces, ITI 94, Pula, University Computing Center, Zagreb,1994,p.p. 397-402. Z.Zenzerovi, Optimizacijski modeli planiranja kapaciteta morskih luka, Ekonomski fakultet, dokt. disertacija, Sveu iliate u Rijeci, Rijeka, 1995. Z. Zenzerovi, Kapaciteti uslu~nih mjesta u funkciji efikasnosti sustava masovnog opslu~ivanja, Zbornik radova Ekonomskog fakulteta Rijeka, Rijeka, 1996. I. }upanovi, M. Gjumbir, Racionalizacija procesa izdavanja prijevoznih karata na autobusnom kolodvoru, Fakultet prometnih znanosti, Zagreb, 1978. >@BB,| <  \^nW$$ $ & FnW$$$< R  \^02PRTV`bJLjlnp嫠咇tkjQEHUmH jQ@A CJUVmH jUmH jCJEHUmH CJmHjEHUmH jCJEHUmH jjCJUVmH j܀CJEHUmH j48A UVmH jCJUmH  5CJmH 0JCJOJQJmH CJmH mH 5mH 56CJmH  6CJmH %$ !  $ / !$pM $!$!$pM !!!p   $$ $ $T  Bxz<>@Bfh "$żధ{rl jmH j EHUmH jQ@A CJUVmHj]EHUmH jQ@A CJUVmHjCJEHUmH jOEHUmH jQ@A CJUVmHjEHUmH jQ@A CJUVmH6mH jECJEHUmH mH  jUmH jKEHUmH jQ@A CJUVmH*                6!8!V!X!Z!\!l!n!!!!!&"("P"R""""񳪳xsjjEHUmH @mH jCJEHUmH j EHUmH jsUVmH jEHUmH jR@A CJUVmHjEHUmH CJmH jiEHUmH j[R@A CJUVmHjQEHUmH j    ($$$"""##"#$#&#(#*#.#0#P#R#T#V#X#Z#^#`###############$ $>$@$B$D$$S}qhj&EHUmH jW@A CJUVmHjEHUmH jUVmH  jUmH  j5EHUjE'B UV jUjEHUmH jEHUmH jE'B CJUVmH jeEHUmH jEHUmH jE'B CJUVmH jCJUmH CJmH jEHUmH mH (^###$$$$$%(((((*,/00061l1"$ "$J   B$ $ & FnW$    $$$ ]y $$$$2%4%R%T%V%X%z%|%%%%%%%%&&&&''''((n/p////////////////Ǿ}w}s}w}sH*mH  jmH 6mH jREHUmH jW@A CJUVmH5mH  6CJmH jICJEHUmH jW@A UVmHjCJUmH j$EHUmH jSAA CJUVmHj EHUmH jW@A CJUVmH jUmH mH jEHUmH CJmH -///:0<0>000000000081<1n1111111222$2&2D2F2H2J2T2V2t2v2z2|2222xq jCJU jfEHU jzEHUCJjEHUmH CJmHjEHUmH jSEHUmH jAA CJUVmH jUmH  CJH*mH jCJEHUmH j/CJUVmH jCJUmH CJmH j%EHUmH H*mH  jmmH 6mH mH )l1n122$2&2D2F2T2V2x2z22222#$  #$t#$  #$#$t#  &B     #$ !0 &    !$222222222222l3n33333333333334444.404>7@7~77777777777777нШГЄЀ~|x~|x~|~| jH*6H*mH  jlmH jEHUmH j=4A CJUVmH jEHUmH j X@A CJUVmHj=EHUmH j X@A CJUVmH jUmH mH  j%EHUjK'B CJUVCJ jCJU j9EHUjK'B CJUV/2244~777p9r999\;^;<<<<<<<$$ %$$ 9r $$ u$H$wY$$  $ $@    B$6$#$777788:8<8888888r9t9v99999999&:(:;;;;@;B;\;p;;;;;;D<F<f<h<j<l<v<x<<<<<<ȵȧȵȌj6CJEHUmH jy#&A 6CJUVmH j6CJEHUmH jz#&A 6CJUVmH j6CJUmH 6CJH*mH  6CJmH CJmH  jmmH  jlmH jZCJEHUjK'B UV jUH*mH 6mH mH 2<<<<<<== ===d__$$$$Tl4     <4 ,|$           $$ = =,=8=D=P=\=h=t====f$$Tl4     <4 ,|$           $$ ============f$$Tl4     <4 ,|$$$ ===== >>">.>:>F>R>$$ R>T>\>^>`>b>d>p>|>>>>kffffffffff$$$$Tl4     <4 ,|$ >>>>>>>>>>>>f$$Tl4     <4 ,|$$$ >>>>?? ? ?????f$$Tl4     <4 ,|$$$ ?*?6?B?D?L?N?P?R?T?V?X?fx$$Tl4     <4 ,|$$$ X?Z?f?r?~????????fd$$Tl4     <4 ,|$$$ ????????????fP$$Tl4     <4 ,|$$$ ?????????XEZE_\W\$$$$Tl4     <4 ,|$$$$$ <?b@d@@@@@@@@@@@@@AA$B&BDBFBHBJBTBVBtBvBxBzBNCPCnCpCrCtCzD|DDDDȽ|rgj4CJEHUmH jAA UVmHj>CJEHUmH jAA UVmHjCJEHUmH jCJUVmH jCJEHUmH jCJUVmH jhCJEHUmH jCJUVmH jDCJEHUmH jCJUVmH jCJUmH  CJH*mH CJmH mH(DDZE\E>G@G\G^GGGGJ L\QQTTTTFYYR[X[^[`[b[[[[[[\\p]r]]]N^P^^^F_H_J_L____``dafaharbtbccccjjjjսշսշշշշշշ jmmH  jlmH  CJH*mH 6CJH*mH  6CJmH  jrCJmH  jmCJmH  jlCJmH CJmH  jmH 6mH 5mH  5CJmH mH CJmH jCJUmH >ZEG@GGGGGdIIJJJ L@LvLLLMNNNNOZQ$$"$"$$$$#$$$ZQ\QQQTUVVfWVXXXDYFYYYZ[[\\\\\\\0]$$$$$$h$ & F$$0]2]4]6]8]:]@]F]L]8$$$$R$$Tl4r `       L]N]T]v]]]]]]$$$h$$Tl4֞ 5         ]]]]^^^^ ^$$$f$$Tl֞ 5          ^"^(^8^T^X^h^x^^^^^^^^^^$$$f$$Tl֞ 5  ^^^^_,_P_T_d_t______ ``0l$f$$Tl֞ 5  $$`*`:`J`L`R``````aaalavaal$f$$Tl֞ 5  $$aaaaaaabbbxbbbbbbb$$f$$Tl֞ 5  $$bb c c"c*cccccccD$f$$Tl֞ 5  $$ cccc^hk.nojrstuvvTwVw$ & F$$f$$Tl֞ 5         j8kxVxxxxxxxxxT$$Tl4r#(             $$$$Ĥ\Y\u`uDRDyK zenzerov@pfri.hryK 0mailto:zenzerov@pfri.hrDd<  C A2'ח } `!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}    ($$$X!Z!\!l!n!!!!!&"("P"R""""""##"#$#&#(#*#.#0#P#R#T#V#X#Z#^#`###쳼wniajE'B UV jUj7EHUmH j5EHUmH jE'B CJUVmH jz2EHUmH j1EHUmH jE'B CJUVmH jCJUmH j.EHUmH CJmH j1,EHUmH @mH j(CJEHUmH j'EHUmH j%UVmH mH  jUmH j#EHUmH $#############$ $>$@$B$D$$$$$2%4%R%T%V%X%z%|%%%%%%%%&&&&'ƽ먟듊wlj^JCJEHUmH jW@A UVmHjCJUmH j9HEHUmH jSAA CJUVmHj!FEHUmH jW@A CJUVmHj2CEHUmH j;AEHUmH jW@A CJUVmHj?EHUmH j >UVmH  jUmH mH CJmH  jU jJ:EHU* @?obIFHeA*X^ɁQlo`&0-Z\W(Yr 8=`;+KRs ?u3b< Equation@ mwp{ METAFILEPICT=|=&@ p .1  `  & MathType@Symbol-!m"System-70Dd<  C A2- ^W1ڛRLxD`!- ^W1ڛRLx `Ƚ!xcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd|B  S A? 2BEQU9ygFa҅`!YBEQU9ygFT@ `W0'xcdd``Vgd``beV dX,XĐ )ɁSRcgb x@؀깡jx|K2B* R .͔ `W01d++&104\ F\L 8@|Vj&2n Mp~ *_‡f#AClb(ΟŌwclE W&00aI+phae8ACwLLJ% ̀iSDd B  S A? 2,4CWNa`!,4CWNa`xJAg._g>DDEHRbaF,!੐*I  VVbb#H'2&<  ,2/:b2έLCI`r~V e^L 6KYK'4UO*hd%0p&h_Xv{d+V9K'20&>'(8q[{In JFV`9}Y9'yqDԐ{>/*JnU܃ɐA`0kgݝyUܒ|EYǀwRY8-yiؖ<=7 aURo8C+`x'F2^L j0BR-þ{ DdTB  S A? 2dט6>R: MP@`!8ט6>R: MP@ 0= XJxUPKJA}U3M2(u5p@rEL.a mdv9.\u}Ne!VLtWUk>4vXPY"cdtb̀Rwy_sʣ֑DO)VlR<)xk-F2.¶F+ʚ*q5j|wtP^###$$$$$%(((((*,/00061l1"$ "$J   B$ $ & FnW$    $$$ ]y ''''((n/p//////////////////:0<0>000000000081<1n11111112zjhSEHUmH jAA CJUVmH CJH*mH jQCJEHUmH jDPCJUVmH jCJUmH j:NEHUmH  jmmH H*mH  jmH 6mH jgLEHUmH jW@A CJUVmH jUmH mH 5mH CJmH  6CJmH .l1n122$2&2D2F2T2V2x2z22222#$  #$t#$  #$#$t#  &B     #$ !0 &    !$222$2&2D2F2H2J2T2V2t2v2z2|222222222222222l3n33333333333334ݾݭ󓊟~ujfEHUmH j X@A CJUVmHjRdEHUmH j X@A CJUVmH jUmH  j:aEHUjK'B CJUV jN_EHUjK'B CJUV jCJU j{\EHU jZEHUCJjWEHUmH CJmHCJmH mH j-UEHUmH +2244~777p9r999\;^;<<<<<<<$$ %$$ 9r $$ u$H$wY$$  $ $@    B$6$#$wEzws7}6]wP5Q5gd)]wޖb;lSt/;DdTB  S A? 2dAܖs @`!8Aܖs   XJxUPAJP}3I b .)؝B/P PhZ.G…+oнx^wf{濙!4o цk+Kd sΘ+e*Mյ8<8~38-B$C7fia8Y=7/[kdm1QN3_ {$o/i^Wɬ75ŷ;̇|Foo|4444.404>7@7~7777777777777777788:8<8888888r9t9v99999999&:(:;;;;@;B;\;p;;;;;;D<੣6CJH*mH  6CJmH CJmH  jmmH joiCJEHUjK'B UV jU6mH  jH*6H*mH  jlmH mH  jUmH jgEHUmH j=4A CJUVmH ;D<F<f<h<j<l<v<x<<<<<<?d@f@@@@@@@@@@@@@AA&B(BFBHBJBLBVBXBƹvk`jwCJEHUmH j vCJUVmH j}tCJEHUmH jrCJUVmH jYqCJEHUmH joCJUVmH jCJUmH  CJH*mH mHCJmH j0n6CJEHUmH jy#&A 6CJUVmH jl6CJEHUmH jz#&A 6CJUVmH  6CJmH j6CJUmH %<<<<<<== ===d__$$$$Tl4     <4 ,|$           $$ = =,=8=D=P=\=h=t====f$$Tl4     <4 ,|$           $$ ============f$$Tl4     <4 ,|$$$ )M]?,.: O}-Uws 2B`]!Q\%)6) g?j;[DdB  S A? 2e> `[/Y~r`!e> `[/Y~r `gxKK@g&+)|BAC g'+h  M[hAzZG(^ċC?@^ųqg6.!am;/`uQ` xe.[ڄ('HQI7J]W .D| <3e==swƍ5EWQ?x\ ^%XF}i;֊]nv3l? ^k/y9S,<=oY][5I7 yI3X| ZZg29V&0K/S]"xQxz(cx, r̡~& ۹)Ie'Ñ5xzy[ Q1 X\߼cDdB  S A? 2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!n===== >>">.>:>F>R>$$ R>T>\>^>`>b>d>p>|>>>>kffffffffff$$$$Tl4     <4 ,|$ >>>>>>>>>>>>f$$Tl4     <4 ,|$$$ >>>>?? ? ?????f$$Tl4     <4 ,|$$$ ?*?6?B?D?L?N?P?R?T?V?X?fx$$Tl4     <4 ,|$$$ R~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$_X?Z?f?r?~????????fd$$Tl4     <4 ,|$$$ ????????????fP$$Tl4     <4 ,|$$$ ??????????ZE_\\W$$$$Tl4     <4 ,|$$$$$ XBvBxBzB|BPCRCpCrCtCvC|D~DDDDDZE\E>G@G\G^GGGGJ L\QQTTTTFYYR[X[^[`[b[[[[[[\\p]r]]]N^ jmCJmH  jlCJmH CJmH  jmH 6mH 5mH  5CJmH mH jI~CJEHUmH jAA UVmHjS|CJEHUmH jAA UVmHjCJUmH jzCJEHUmH j/yCJUVmH CJmH 4ZEG@GGGGGdIIJJJ L@LvLLLMNNNNOZQ$$"$"$$$$#$$$DdB   S A ?  2ܩlg)C-B`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/ml%##Ozp!'6Et32 }QeDdB   S A?  2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ږDd N^P^^^F_H_J_L____``dafaharbtbccccjjjj8k1u]2FJvc rk\5 .[W|ni&\je EZ )Q1üø YCܺI;?=3&4#۪$Wz.`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4cccc^hk.nojrstuvvTwVw$ & F$$f$$Tl֞ 5         > =p|Ĥ\Y\u`uDRDyK zenzerov@pfri.hryK 0mailto:zenzerov@pfri.hrDd<  C A2'ח }5`!'ח } ȽRxcdd``.````b`V dX@`F 1.) (depending of EMBED Equation  and EMBED Equation ) by service rate of the multipurpose service place. If the service rate of a specialized place equals to EMBED Equation , then the number of customers in the queue will equal to that in system having multipurpose service places; if it is greater than EMBED Equation , queue will be smaller to that in system with multipurpose service places, and vice versa. Shown method can be used in planning service place types considering the service purpose. Of course, the final decision on specialization of service places should consider costs of equipment required for specialized and multipurpose service places. 4. CASE STUDY - ORGANIZATION OF COUNTER SERVICE 4.1. Problem description The analysisb[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u;SDd|B  S A ? 2Ǽ-Y|#8|V_`!WǼ-Y|#8|V>`e 0%xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W;H&׀ of the service place specialization impact to queuing system efficiency was performed for an existing organization of Police Department counter service the offering following services: Counter 1 - Issuing driving licenses and license plate Counter 2 - IE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd|B  S A? 2BEQU9ygFa`!YBEQU9ygFT@ `W0'xcdd``Vgd``beV dX,XĐ )ɁSRcgb x@؀깡jx|K2B* R .͔ `W01d++&104\ F\L 8@|Vj&2n Mp~ *_‡f#AClb(ΟŌwclE W&00aI+phae8ACwLLJ% ̀iSDd B  S A? 2,4CWNa`!,4CWNa`xJAg._g>DDEHRbaF,!੐*I  VVbb#H'2&<  ,2/:b2έLCI`r~V e^L 6KYK'4UO*hd%0p&h_Xv{d+V9K'20&>'(8q[{In JFV`9}Y9'yqDԐ{>/*JnU܃ɐA`0kgݝyUܒ|EW]kA?60n, Mne$VIp7eZ`}|7 ~hI9 L] RzΟv-4 `PcdbR ,.Iexf:uSDdB  S A? 2{<ŏW&n oWƠ`!O<ŏW&n o0 ؛1xOKA߼l4Yc4jҦsiCBBcj x= ^<'~C Xp;of3I;a6g{v-|V>1<3z2_;uv, Tk##p8W @ :jXXaq(8#⫭X}ﺫ`Vo3>L>' uA]\$1/c^g&(P{H>v.u.t}ZMS?0_,i/+(j|*V 'Y~2N]ykPrݰFF*ټiEIVn\g3&O&__*F4y~cMȦHDs2_ *SI/q'Ou>d/1ScFMiqVt⹠)/\|äi;\3Qգ+#ŷH k\cf1ZXoǩDd@<  C AYǀwRY8-yiؖ<=7 aURo8C+`x'F2^L j0BR-þ{ DdTB  S A? 2dט6>R: MP@ `!8ט6>R: MP@ 0= XJxUPKJA}U3M2(u5p@rEL.a mdv9.\u}Ne!VLtWUk>4vXPY"cdtb̀Rwy_sʣ֑DO)VlR<)xk-F2.¶F+ʚssuing ID and passports Counter 3 - Registration/deregistration of residence. Statistical observation in period from January 2, 2002 to May 2, 2002. produced data on total number of customers requiring one or more of above services or arrived at a counter, as follows: Counter 1 - 6588 customers Counter 2 - 1356 customers Counter 3 - 1019 customers. Considering working hours of six hour a day, the average number of customers per day and hour respectively is as follows: Counter 1 - 77.51 customers/day; 12.91765 customers/hour Counter 2 - 15.95 customers/day; 2.65882 customers/hour Counter 3 - 11.99 customers/day; 1.99804 customers/hour. It was also established that average processing time for any counter was 7.5 minutes. The objective is to make business decision that would enable optimal counter operation, i.e., working schedule providing customers with services in the shortest possible time and reducing idle time of clarks to minimum. 4.2. Problem definition On the basis of above, it is possible to de2P|s7y nR,ף`!$|s7y nR, xcdd``cd``beV dX,$XĐ +7XRYaj`e~35[0d P@penR~^](;Vded( #6 *o.#duF9(0b2I $37X/\!(?71N飘xDF&2rc0X'ć`Q=cdbR ,.Ie`Ew3X?@r Equation@ rHP LaserJet 4/4MH Ma METAFILEPICT|> p .1  ` & MathType@ Symbol-!r"System-5Dd<  C A2gw|. JP"Mn#QM`!gw|. JP"Mn#Q`!x51 @EL\%$b K-P!`a0h<0^0Յa7)4s6hu$KT~L\wlGȱٷǭo*`Xۇ:܅rӗ>Oѻ0:b t׶bK~Y;a DdHB  S A? 2ƛyYjڨ`!ƛyYj@%9]xkAIblccֈE[miBŃ^*@ ƪ-J?E/"%zEmKn/6qgfwI un{3$B=OI6A6 p `argC/v`tgB Ỏ.lQng'3 wl7ƒ 8"A;f)w*˲a_vϗ}Y=.|-\,^$Zu޼\}bNfR Q?eAϊK~[`,)0_ͩ69P;t*;t1w跨2`|J:M@O/*dB{[VgKiՕ,0ؤ[I"}az nLweF=&9Hq,= ܄o~_٣4 jd nzݟQܻrG'~=#Yƫ^KVfbH8cCSy﹯y|yF7![)$/9JU9gD?oVP"t=ٽ?^qD痃ApZa ZBF6: %_&8DdB  S A? 22M}``!2M}ߌ` xJAgg/_`qTB*Ԃ"&`ψ X,|YYZYZ,}&eIrBc7B 4bj,KMWA+[bWJ(B42صNҋZ/@ G񋲞te&d:uivo=~:ηWh.7"^>1͖z0gDdB  S A? 2N- X1LWv-'TB`!N- X1LWv-'TXsxcdd```>0fine the problem. Number of customer requiring a service at any counter is a random variable as well as processing time. Adequate statistical test revealed that distribution of number of customers and processing time in observed time unit follow a Poisson *q5j|wtPwEzws7}6]wP5Q5gd)]wޖb;lSt/;DdTB  S A? 2dAܖs @ `!8Aܖs   XJxUPAJP}3I b .)؝B/P PhZ.G…+oнx^wf{濙!4o цk+Kd sΘ+e*Mյ8<8~38-B$C7fia8Y=7/[kdm1QN3_ {$o/i^Wɬ75distribution, meaning that counter service could be considered as a queuing system. Counter service place system is queuing system of M/M/S/( type, i.e. having an infinite time a customer spent in queue with the queue discipline on the FIFO basis (first in-first out). According to the task set, it is possible to make following business decisions: Organize multipurpose (universal) counters, meaning that any customer can be served at any counter Organize specialized counters, i. e., customers can be served a ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03@ d3DdB  S A? 2Dxv~b(`r{Ey`!qDxv~b(`r{E@'<]?xkA߼Mfun5TkwڦD"^Uڂ&^DO"=x_ ^=ɻV6ծc3g{y3ofo(>0Ɋ7/2zqzz< 3J5;r&!A 梵#iࡐ'>X\\Yw "OEXgZ{Xdk\~}[Sþ<Fp$. ݬtn&RY+>=_ET92ʑ" (f0a ?ǵ9g96}X#hz*, eho_A{GUa 􊡩EKբnjH^HH-KWΌt}leU5B<푳f4TsگL'(g|4$y͌惄3yknoy4{7ԿRQj:BiNFviLK2mvP5OI#=+ӶrNLO{β?fQ]'ɾ`TѮ<\C.Dq~]eDdB  S At particular counter depending on service type required. Comparison of multipurpose and specialized counter indicators will yield an optimal solution of the observed problem. 4.3. Analysis and discussion of the solution Since the counter service is defined as a queuing system, the problem has been solved using the queuing theory. On the basis of adequate formulas, counter operation indicators have been calculated for one system of M/M/3/( type and four systems of M/M/1/( type and shown in Table 2. Table 2. Comparison of Police Department counter service operation indicators by counter type No.IndicatorUnitMultipurpose service placesSpecialized service places1.2.3.1.Arrival rate (()cust./hour17.5745112.917652.658821.998042.Serviceŷ;̇|Foo|)M]?,.: O}-Uws 2B`]!Q\%)6) g?j;[DdB  S A? 2e> `[/Y~r`!e> `[/Y~r `gxKK@g&+)|BAC g'+h  M[hAzZG(^ċC?@^ųqg6.!am;/`uQ` xe.[ڄ('HQI7J]W .D| <3e==swƍ5EWQ?x\ ^%XF}i;֊]n? 2,b;L \ܵ`!,b;L \Xqxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03^8Dd B  S A? 2SkTbl _c~A`!vSkTbl _cj18DxAkA{idK7M&AJcEЀ/BRcTjB)Z.DzY< D ׶83owI:a7{޼Y [J<=W<,HnWYj8,3:GG âwj`F+Q -./Zk \`C qyb#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_HolC' $/9. 8w\֮(!UU2! _ rate (()cust./hour88883.Traffic intensity (()-2.196811.614710.332350.249754.Number of service places (S)counter32115.Utilization system coefficient ((/S)-0.732270.807350.332350.249756.Average number of customers in the queue (LQ)customer1.478453.022840.165440.083147.Average number of customers in the system (L)customer3.675274.637550.497800.332908.Average time a customer spends in the system (WQ)hour0.08413 (5.05 min)0.23400 (14.04 min)0.06223 (3.73 min)0.04161 (2.5 min)9.Average time a customer spends in the system (W)hour0.20913 (12.55 min)0.35901 (21.54 min)0.18723 (11.23 min)0.16612 (9.97 min)10.Probability that all service places are idles (P0)%8,1910.6666.7675.02 Results in Tablm`2E2[ǻZ;̊_a+YPfE(fm ' y $|kR[WJ˸-$i*DFnfSx&50F.jFA0aIK)z<;:qXK QI7PY=b 92/|5 ʝ*+mk~PMtUZBTWGb\9lљِʻAT.p90,8/?%U)kt(RVY()ۮ()[W!_# o=y@o=z4E^=y5zUl&)?{zzYCk<'| Vǥݵ^2Y#RRf8>m`$wz2߼~:62H^>T*i?OUTT|Q;Kagʇ(8W: [ A]XM5LM3Nw"/a5 Equation@ XHP LaserJet 4/4MH Ma METAFILEPICT`N< u .1  @ & MathType DTimes New Roman-!X"System-Dd<  C A2 :xGv1.mѿ`!:xGv1.m@Rx51 @E%$ZE ;o`aZئX"*$"r o'"  +t/?<%PQ2P\%`Mv VYyU %Rs^R5w\s[k{K7<;yS> F}xh:E۪(mkQ}RDdXhB  S A? 2a>/h|YJ HXD=j`!5>/h|YJ HXDe 2. show that expected number of customers in the queue is 1.47845 and 3.27142 for multipurpose and specialized counters, respectively. This example supports the proof as per Chapter 2. of the paper, i.e., if the service rates are equal, the queue is greater in specialized than in universal service places. The same conclusion refers to the time customers spend in the queue as well as to busy/idle state of a counter. At last, the fact that cannot be neglected, is that specialization requires increased numbepAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMr of counters, specifically, four counter in this example. However, it is fair to assume that a specialized counter should have higher service rate, and according to relation (17) in Chapter 3. of the paper it comes out that for S = 3/4, (where the first number stands for number of counter in multipurpose system and the second for number of specialized counters), ( = 17.57451/4 = 4.39363, ( = 8, specialization index is ks = 1.21878 which requires specialized counter service rate of (1 = 9.75024 customers/h@|xcdd`` @bD"L1JE `x0 Yjl R A@v n`f` UXRYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5a`!-WQ! ᵁo,F=!`h(3x=OAg 㘏 E "A "i [QDV, c+ B(5KhHaQ"J"I+)ݻխd}g!"/x<'^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *Ii[It#Qn[kQ,S PrG N => ͭrnODd|B  S A? 2 h:V'BLa^P`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsour. Thus, under given condition, the implementation of specialized counter in Police Department counter service is justified only if the service rate is at least 9.75024 customers/hour; therefore, service time should be reduced to 6.15 minutes, or service rate should be increased by 21.9%. Considering the service type offered at particular counter and proportion of human work required in providing a service, it is not always possible to reduce such service time. However, assuming that in this example is possible to increase service rate to 9.75024 customers/hour, the indicator of expected number of customer in a queue is favorable, but increasing number of counters would severely impact particular counter idle time from 10.66% to 75.02% of total working :y"-x?$_DdB   S A ?  2ܩlg)C-W`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/ml%##Ozp!'6Et32 }QeDdB   S A?  2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ږDd  S2), while other services will be handled either at counters S3 or S4, or only at counter S3, thus reducing the number of counters to three. Variant 3 resulted from experience to date, where driving license were only handled at one counter. It is practicable if, on the basis of past number of customers as noted during observed period, average processing time ranges from 4 to 4.6 minutes, e.g. (=15 customers/hour. Table 4. shows results in comparison of indicators for proposed counter service variants. Table 4. Comparison of indicators for combined counter service variants IndicatorVariant 1.Variant 2.Variant 3. (( = 15)S432LQ2.122.886.15P037.6%27.47%27.8% On the basis of results shown in Table 4. and Table 2., one of the following business decisions should be made: Organize counter service as one system containing three multipurpose counters. Organize counter service with two counters, one specialized for driving licenses and the other multipurpose counter for other services. 5. CO t$/秆vSR Ή=*:)-q=#;㫧 A"ofc-ysiE=goiRDd< ! C A 2Cd$l@ (`B`!d$l@ (`B` !xcdd`` @bD"L1JE `xrYjl < %! `y&F=c2h@Hfnj_jBP~nbC7>]4;VdedpdL&x `6W&@| D@2_Ŝ0q[qaVt0&FNCLUSION In a queuing system, service places can be multipurpose or specialized. If both of service places have the same service rate, than the average number of customers and the time a customer spends in the queue are greater in specialized service plaB   S A ?  2ݹM*mgPMmU`!ݹM*mgPMmU̬9xO@߽BRm&dPbI qp0bl l:lb4NY޵4x͵s}?zeP`h!Y!>1u]2FJvc rk\5 .[W|ni&\je EZ )Q1üø YCܺI;?=3&4#۪$Wz.`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7|ces than in multipurpose ones. Using the queuing theory, above conclusion has been proven by comparing the number of customers in a queue for S systems with one specialized service place to one system with S multipurpose service places. However, considering better equipment of specialized service places, their service rate should be higher; specialization index is a number showing the smallest increase of service rate required in order to justify the implementation of specialized service places, i.e., tM`-w 0py{Ĥ\Y\Nf:/ Dd$hB " S A ? !2tŦ/8FPi`!HŦ/8F@E |xcdd`` @bD"L1JE `x Yjl R A@2 N`c`x UXRYvo`0L`A $37X/\!(?71]<6j`dg)ց%Al 5p0T 1`_ +ss`.w+Hi.Ŀo 1@sAC `@ ;F&&\w~bf@dnJ  Equation@ m E METAFILEPICT=|=, p .1  `  & MathType@Symbol-!m"System-Dd< # C A"2- ^W1ڛRLx `!- ^W1ڛRLx `Ƚ!xcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd< $ C A!#257oB73"o equal the system efficiency indicators that of multipurpose system. The presented method, recommended for planning of service place types considering its purpose, is illustrated through an actual counter service in a Police Department. REFERENCES D. Barkovi, Operacijska istra~ivanja, Ekonomski fakultet, Osijek, 2001. R. Bronson, Operations Research, McGraw-Hill, 1982. T. Pogny - Z. Zenzerovi, On the Parameter Shift Influence to the Total Waiting Time in M/M/S/( Queueing System, II, Proceeding of the 16th International Conference on Information Technology Interfaces, ITI 94, Pula, University Computing Center, Zagreb,1994,p.p. 397-402. Z.Zenzerovi, Optimizacijski modeli planiranja kapaciteta morskih luka, Ekonomski fakultet, dokt. disertacija, Sveu p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u;SDd|B  S A ? 2Ǽ-Y|#8|V_`!WǼ-Y|#8|V>`e 0%xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay `! 7oB73"``:!xcdd``> @bD"L1JE `x,56~ĒʂT؞L 1L`^ $37X/\!(?71d.PH+22]2)Q$9@+ss >? cbNb"#D#{8=padbR ,.Ie`Cw3XͲ,Dd B % S A"? $2SG^R2 Eʨh\`!SG^R2 Eʨh!x/CAgfҧ6ơH_!p'$M|=DԩKp8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd B & S A#? %2Vl3S``!Vl3S`ŴPt]x;KAgf/9saac @s񑠤E?U,m,D$O V*;5cw! a=FlY <9Q :Ny j[IKk2:$HJnKVܕiAL6bs̵;&ԊӨ^G%>E;nO4W2FGig*ҤV־žϔZh_Ҭ}PD,VR-mopW#Y~sglo8j!xK#O2.9|;Gs+YCr_@BB,| < \^nW$$ $ & FnW$$$< R \^02PRTV`bJLjlnp~rijuEHUmH jQ@A CJUVmHj{EHUmH jQ@A CJUVmH jUmH jӇCJEHUmH CJmHjEHUmH j*CJEHUmH jCJUVmH jCJEHUmH j48A UVmH jCJUmH  5CJmH mH 0JCJOJQJmH CJmH %^Lxcdd`` @bD"L1JE `x0`41c@ UXRY`vo`0L`A $37X/\!(?71a-%@y mĕ]h&0@penR~D#'0b &1Mr` f  `@]';F&&\wc82 _ADd B * S A'? )2a"oD@^i`!Va"oD@ !!!$ !  $ / !$pM $!$!$pM !!!p   $$ $ $T  B9W;H&׀W]kA?60n, Mne$VIp7eZ`}|7 ~hI9 L] RzΟv-4 `PcdbR ,.Iexf:uSDdB  S A? 2{<ŏW&n oW `!O<ŏW&n o0 ؛1xOKA߼l4Yc4jҦsiCBBcj x= ^<'~C Xp;of3I;a6g{v-|V>1<3z2_;uv, Tk##p8W @ :jXXaq(8#⫭X}ﺫ`Vo3>L>' uA]\$1/c^g&(P{H>v.u.t}ZMS?0_,i/+(j|*V 'Y~2N]ykPrݰFF*ټiEIVn\g3&O&__*F4y~cMȦHDs2_ *SI/q'Ou>d/1ScFMiqVt⹠)/\|äi;\3Qգ+#ŷH k\cf1ZXoǩDd@< xz<>@Bfh  " $    !!!!żvrH*mH jCJEHUmH  jmH j6EHUmH jQ@A CJUVmHjEHUmH jQ@A CJUVmHj(CJEHUmH jyEHUmH jQ@A CJUVmHjʐEHUmH jQ@A CJUVmH jUmH 6mH mH joCJEHUmH ,$8$x=hA߼>ubu%]4x v&98xk;4v~VXBDHa! :&뼙aV2ϛM7ZiQ aj91-Uz y#3w$!I(ѶjkOUH3W׻~^ `̠oN L4*38ZDJc>~H>~|7rv*6[ _Vǻz lr@VHEi#>[eJj)_^񇒸fs 9=C\>˝ɝůYߙ!^|}Teǃ |2Su2& eOsG߹TmQN47ۀqEjof~$UC' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z    ($$$!""""""""""""""""6#8#V#X#Z#\#l#n#####&$($P$R$$$$$$%%"%Ǿ~uljCJUmH jȮEHUmH jFEHUmH @mH jCJEHUmH j3EHUmH jUVmH jEHUmH jR@A CJUVmHjEHUmH CJmH jEHUmH j[R@A CJUVmHj{EHUmH j&@&B&D&&&&&2'4'ǾӞypgӞjGEHUmH jPEHUmH jW@A CJUVmHjEHUmH j!UVmH  jUmH mH  j_EHUjE'B UV jUj'EHUmH jµEHUmH jE'B CJUVmH CJmH jEHUmH jCJUmH j(EHUmH jE'B CJUVmH (^%%%&&&&&'******.122263l3"$ "$J   B$ $ & FnW$    $$$ ]y  C A2P|s7y nR,#`!$|s7y nR, xcdd``cd``beV dX,$XĐ +7XRYaj`e~35[0d P@penR~^](;Vded( #6 *o.#duF9(0b2I $37X/\!(?71N飘xDF&2rc0X'ć`Q=cdbR ,.Ie`Ew3X?@r Equation@ rHP LaserJet 4/4MH Ma METAFILEPICT|> p .1  ` & MathType@ Symbol-!r"System-5Dd<  C A2gw|. JP"Mn#Qb'`!gw|. JP"Mn#Q`!x51 @EL\%$b K-P!`a0h<0^0Յa7)4s6hu$KT~L\wlGȱٷǭo*`Xۇ:܅rӗ>Oѻ0:b t׶bK~Y;a DdHB  S A? 2ƛyYj(`!ƛyYj@%9]xkAIblccֈE[miBŃ^*@ ƪ-J?E/"%zEmKn/6qgfwI un{3$B=OI6A6 p `argC/v`tgB Ỏ.lQng'3 wl7ƒ 8"A;f)w*˲a_vϗ}Y=.|-\,^$Zu޼\}bNfR Q?eAϊK~[`,)0_ͩ69P;t*;t1w跨2`|J:M@O/*dB{[VgKiՕ,0ؤ[I"}az nLweF=&9Hq,= ܄o~_٣4 jd nzݟQܻrG'~=#Yƫ^KVfbH8cCSy﹯y|yF7![)$/9JU9gD?oVP"t=ٽ?^qD痃ApZa ZBF6: %_&8DdB  S A? 22M}u,`!2M}ߌ` xJAgg/_`qTB*Ԃ"&`ψ X,|YYZYZ,}&eIrBc7B 4bj,KMWA+[bWJ(B42صNҋZ/@ G񋲞te&d:u]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ڿDdB - S Me9KDj8 CNjEivo=~:ηWh.7"^>1͖z0gDdB  S A? 2N- X1LWv-'TW1`!N- X1LWv-'TX4'R'T'V'X'z'|''''''''(((())))**n1p111111111111111111:2<2>22ǾǴǣǣǟ||v| jmmH H*mH  jmH 6mH j|EHUmH jW@A CJUVmH5mH  6CJmH jsCJEHUmH jW@A UVmHjCJUmH CJmH jNEHUmH jSAA CJUVmH jUmH j6EHUmH jW@A CJUVmHmH .22222222283<3n3333333444$4&4D4F4H4J4T4V4t4v4z4|4444444444ɶɤ~tm~~ jcEHUjK'B CJUV jCJU jEHU jEHUCJjEHUmH CJmHjBEHUmH j}EHUmH jAA CJUVmH jUmH mH  CJH*mH jCJEHUmH jYCJUVmH jCJUmH CJmH jOEHUmH )l3n344$4&4D4F4T4V4x4z44444#$  #$t#$  #$#$t#  &B     #$ !0 &    !$444444l5n55555555555556666.606>9@9~999999999999999998:::<::::::ṰᤛᏍᅑᅑᅑ6mH  jH*6H*mH  jlmH jEHUmH j=4A CJUVmH jEHUmH j X@A CJUVmHjgEHUmH j X@A CJUVmH jUmH mH CJ jCJU jOEHUjK'B CJUV4A(? ,2) #o0U yl!`! #o0U yl!`!Hx5O @]#` v@A?{so|phϮJV50*)tR -X'B$]T,Ts/vak&xAp!cDUjxbt.%sEa;C'Ren.퓘۳C3)?/߽DRPI,/DdB . S A)? -2N̈sxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03@ d3DdB  S A? 2Dxv~b(`r{Ey2`!qDxv~b(`r{E@'<]?xkA߼Mfun5TkwڦD"^Uڂ&^DO"=x_ ^=ɻV6ծc3g{y3ofo(>0Ɋ7/2zqzz< 3J5;r&!A 梵#iࡐ'>X\\Yw "OEXgZ{Xdk\~}[Sþ<Fp$. ݬtn&RY+>=_ET92ʑ" (f0a ?ǵ9g96}X#hz*, eho_A{GUa 􊡩EKբnjH^HH-KWΌt}leU5B<푳f4TsگL'(g|4$y͌惄3yknoy4{7ԿRQj:BiNFviLK2mvP5OI#=+ӶrNLO{β?fQ]'ɾ`TѮ<\C.Dq~]eDdB 4466~999p;r;;;\=^=>>>>>>>$$ %$$ 9r $$ u$H$wY$$  $ $@    B$6$#$::r;t;v;;;;;;;;&<(<====@=B=\=p======D>F>f>h>j>l>v>x>>>>>>AdBfBBǿǴǦǴNj~{u CJH*mH mHjE6CJEHUmH jy#&A 6CJUVmH j6CJEHUmH jz#&A 6CJUVmH j6CJUmH 6CJH*mH  6CJmH CJmH  jmmH  jlmH 6mH jCJEHUjK'B UV jUmH H*mH +{u`!mN̈{Ì0];xMHQͮcJfe!hM JPK)Vx̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[^k!O~Sf،ʥMRdF5t޷DDh1ɗIZ~/@%MtJk,,A@cݪ.Q#uriJdxOC8QU<84bɖ Q}Dd< / C A*.2"CUWz`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}>>>>>?? ???d__$$$$Tl4     <4 ,|$           $$ ? ?,?8?D?P?\?h?t????f$$Tl4     <4 ,|$           $$  S A? 2,b;L \5`!,b;L \Xqxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03^8Dd B  S A? 2SkTbl _c~V7`!vSkTbl _cj18DxAkA{idK7M&AJcEЀ/BRcTjB)Z.DzY< D ׶83owI:a7{޼Y [J<=W<,HnWYj8,3:GG âwj`F+Q -./Zk \`C qyb#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_Hol27)?b.PH+22At 0py{v221)W2At1ufOC5 Equation@ l7) <̽Ƚg*‡V$}ڠW\[?geO]VA^&jQo50_͸WDdDB  S A? 2,.ѳ0:`!.ѳ0`@ *Э xMLAfPm$=H84@T4izxыGㅓpCO!c4A;3kҦyofgvg~L(aBڱAHCwq5)lN jwxg􍑙4k4k-sWԆr8Β????????????f$$Tl4     <4 ,|$$$ ????? @@"@.@:@F@R@$$ R@T@\@^@`@b@d@p@|@@@@kffffffffff$$$$Tl4     <4 ,|$ ct # METAFILEPICT=Y=+ p .1    & MathType @Symbol-!l"System-Dd< 1 C A02'ח }`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufٖ Equation@ l7) ct # METAFILEPICT=Y=! p .1    & MathType @Symbol-!l"System-Dd< 3 C A22'ח }`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDdDhB 5 S A,? 42`>44m`$wz2߼~:62H^>T*i?OUTT|Q;Kagʇ(8W: [ A]XM5LM3Nw"/a5 Equation@ XHP LaserJet 4/4MH Ma METAFILEPICT`N< u .1  @ & MathType DTimes New Roman-!X"System-Dd<  C A2 :xGv1.m?`!:xGv1.m@Rx51 @E%$ZE ;o`aZئX"*$"r o'"  +t/?<%PQ2P\%`Mv VYyU %Rs^R5w\s[k{K7<;yS> F}xh:E۪(mkQ}RDdXhB  S A? 2a>/h|YJ HXD=A`!5>/@@@@AA A AAAAAf$$Tl4     <4 ,|$$$ #MV M \PsClԿ `P8cdbR ,.Iex:f:~DDdDhB 6 S A-? 52`T7 ؤbI(.k$F@A*A6ABADALANAPARATAVAXAfx$$Tl4     <4 ,|$$$ XAZAfArA~AAAAAAAAfd$$Tl4     <4 ,|$$$ AAAAAAAAAAAAfP$$Tl4     <4 ,|$$$ AAAAAAAAAAZG_\\W$$$$Tl4     <4 ,|$$$$$ h|YJ HXD@|xcdd`` @bD"L1JE `x0 Yjl R A@v n`f` UXRYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5vC`!-WQ! ᵁo,BBBBBBBBBBBBCC&D(DFDHDJDLDVDXDvDxDzD|DPEREpErEtEvE|F~FFFFFZG\GPI~tifmH j^CJEHUmH jAA UVmHjhCJEHUmH jAA UVmHjCJEHUmH jDCJUVmH jCJEHUmH j CJUVmH  CJH*mH jCJEHUmH jCJUVmH jnCJEHUmH jCJUVmH CJmH jCJUmH (xxxxxxyyy yyTX`P$$Tlr#(   $$P$$Tlr#(         y y0y2y8y@z|ɽɱɱɽɱɱɱɖɱɱɱɽ0JCJH*OJQJmH  j0J6CJOJQJmH 0J6CJOJQJmH 0J5CJOJQJmH 0JCJOJQJmH  CJH*mH 6CJmHmH 6CJ 6CJmH  jmCJmH  CJH*mH CJmH 7 &P . A!"#$% : i.e., hour a system with a system with @t$4>|$$$$ & F $$& [$@$NormalmH 4@4 Heading 1$@&CJmHD D Heading 2$$@& CJmHnH 8`8 Heading 4 $$@&mH nH <A@<Default Paragraph Font606 List Bullet  & FmH :6: List Bullet 2  & FmH :7: List Bullet 3  & FmH :8": List Bullet 4  & FmH :92: List Bullet 5  & FmH 61B6 List Number  & FmH ::R: List Number 2  & FmH :;b: List Number 3  & FmH :<r: List Number 4  & F mH :=: List Number 5  & F mH .B@. Body TextCJmH(U@( Hyperlink>*B*6@6 Normal IndentmH JOJ HTML TypewriterCJOJPJQJ^JaJo(HR@HBody Text Indent 2 $CJmH6P@6 Body Text 2$CJmHLS@LBody Text Indent 3 $ 5CJmH6D@6 List Continue xDC@DBody Text Indent !$CJmH$/@"$List "(2@2(List 2 #6xOBx HTML Preformatted7$ 2( Px 4 #\'*.25@9 OJPJQJ0 @R0Footer % 9r nH aNaN\]o#9^pqS Y   3?~iop]^de VW^_flm0129:NOPefELS+,56PjkGH !!!!""?#@#I#K#O#S#W#[#_#c#g#k#o#s#t#x#y#############################$$ $$$$$$$ $!$'$-$3$9$?$E$F$J$K$L$M$N$O$U$[$a$g$m$n$r$s$t$u$v$w$x$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'((((((()))*>*?***+5+Q+R+++,>,w,x,,----C///M0N00)1*11111?222I3J3K3O3Y3^3z33333333333333333333344 4 4 4444'4)41494A4I4J4M4X4k4s4u4w4y4{4|4444444444445 555"5#5&5T5]5e5m5u5}5~5555555555566696>6F6R6Z6f6n6z66666666666666,9:<<5>>>V??a@b@@@@@AAAA A,ABAKALAOAQA\AdAlAmApArA}AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBB BBB"B*B5B6B9B;B@BHBTB\BgBhBlBoBqBwB}B~BBCDDD:E;EEEPE[EfEoEpErEtEvExEyE|EEEEEEEEEEEFFeFFFFFF.H/HHHTJUJJJJ K KTKKL,MMYNZN[N\NbN  !!!!!!!! """"!!!#########%#("*"*"********************* * ****************************************************************************************************************************** * * ************************************************************************************************************** * ***$*$*$*$*$*$*$*$*$*$*$*$*$* $* $* $* $* $* $*$$$Ew#$(-:IjN"$/27<Dj{X!#'24D<XBN^^y< !"%4'24:BPIm~|;?ABDEHJLY`oxJMNPQSUWXdktzSWP$&V**+h++ ,3,U,o,,,0B5;";d;;;<?==]>'HHIWIIILMR>^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz(̋>^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz(̋>!^%l34>???R@@@AXAAAZGP^f__:`a4bcdepyz*{{||΂B|<>@CFIKMNOPQSTUVWXZ\^_abdfgijlmpqstvwzKLORTVYZ[\]^_`abcefghijlmnopqrsuvwxy{`#,2:;x<=FHuIL_PY=GR[]cehknruyUnknownPomorski fakultet u Rijeci$&fvx}5EGM]_1ACIY[oSce>LNR`b!!!#"#$#*#;#=#9%I%K%Q%a%c%&&&&*&,&&&&-'='?'aNX:::::::::::::::::::::::::::::::::::::F=!`h(3x=OAg 㘏 E "A "i [QDV, c+ B(5KhHaQ"J"I+)ݻխd}g!"/x<'^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *Ii[It#Qn[kQ,S PrG N => ͭrnODd|B  S A? 2 h:V'BLa^eF`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v^^^^_J_L_N_P_R_T_Z_`_f_8R$$Tl4r `       $$$$ /X2$_kW<󒇗pKe2$^4.lƋjwL&@0(  B S  ?aN _Hlt507075964~bNbNPomorski fakultet u RijeciC:\Radovi\KOI2002.engl.docPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.engl2|2}d5~N\ \TNTYl̩d<A `Xhtfl=M #fX t  bwp i }O\ ipm9'B!Brd" b4%!j%jm&dXE& J,-. U8$Y< [m=hL'I'? "C SEGnE z=KwfLN<:jNN lPvbz'~X/>8=X1|(Y [ B]1;l]SgMy^ @aW_jbE.+hp) nds/:v\+w >LQxv@x .... OJQJo( OJQJo( OJQJo( OJQJo(hh. hhOJQJo( hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh.hh^h`o()hh[]hh.hh.hh^h`5o(.hh^h`5o(..0^`05o(...0^`05o(.... 88^8`5o( ..... 88^8`5o( ...... `^``5o(....... `^``5o(........ ^`5o(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.88o(..p0po(...@ 0@ o(.... xxo( ..... HHo( ...... `o(....... P`Po(........ o(.........hh.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`562.1.hh.88^8`o(.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho()hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........^`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`o(. hh^h`OJQJo(hh^h`o(. Po(.YPYo(.."0"o(...0o(....   o( .....   o( ...... `o(....... ?`?o(........ PPo(.........hho() hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`5o(.--^-`o(.hho()2~}|-."C%jm&}Ot lP|(Yz=K+wvJ,[ B]=Xird"E&#fX=MI'?jNNbw9'B!@a ixv@xY<+hpMy^;l]fb4%[m=U8z'~X_jbfLNSEGnds2@YNYN$~uYNYNnW n  H PR_3R   2nocd V/de%DEFKL, !2!Q!!!"""@#@$$$f_h_n_______$$$h$$Tl4֞ 5         ___`*`.`2`6`:`$$$f$$Tl֞ 5         :`<`B`R`n`r`````````a aa$$$f$$Tl֞ 5  aaaaaFajana~aaaaaab$b4b0l$f$$Tl֞ 5  $$4bDbTbdbfblbbbbb ccc"ccccl$f$$Tl֞ 5  $$cccccdd(d*d0dddddddd$$f$$Tl֞ 5  $$de$e:ezXzpzzzzzzzzzT$$Tl4r#(             $$$$zzzz{{{{"{&{*{TX`P$$Tlr#(   $$P$$Tlr#(         *{:{J{L{R{V{f{j{n{p{v{~{{{{{{{{{Hh|P$$Tlr#(   $${{{{{{ |||$|*|4|D|\|l||x$x$P$$Tlr#(   $$||||||||||QXP$$Tlr#(   $$$x$P$$Tlr+' 0   ||||}}}}F΂$$ X$$$$P$$Tlr#(        $$~~~~~  024`@ "HΎ. 6^@ɽɱɱɽɱɱɱɖɱɱɱɽ0JCJH*OJQJmH  j0J6CJOJQJmH 0J6CJOJQJmH 0J5CJOJQJmH 0JCJOJQJmH  CJH*mH 6CJmHmH 6CJ 6CJmH  jmCJmH  CJH*mH CJmH 3΂ $.06B$L\'$$Tl     T #$$E$$Tl    \T #$$BP\^`@>@މ$$$ & F$ & F$'$$Tl     T #$$bI(.k$F@> =p|Ĥ\Y\u`uDRDyK zenzerov@pfri.hryK 0mailto:zenzerov@pfri.hrDd<  C A2'ח }J`!'ח } ȽRxcdd``.```$G'H'X'''''I(R((()))**++-----L0M0~2222)3H3I3J3K3N3O3X3Y3]3^3r3s3y3z33333333333333333444#4$4J4M4T4W4X4[4f4j4k4r4s4|44444444445#5&5O5T5\5~55555665696=6f6666666k:l:;;;>>]@^@@@@@@@AAA AAAA'A,A4A9AAABAOAQAVAWA[A\ApArAwA|AAAAAAAAAB B B;B?B~BCDDD9E:E;EDEIELETEWE_EbEgEEEFFFFFFFFFFFGG HH-H.H/HHHHHBJSJTJUJJJJBKBLBNYN\N]N_N`NaN0"0"0"00110101110Z0\1H000000000 0!0"0"04$0$1D&0&0*0*1101111l2021212020203040"40$40&40D40z4191909091916:1:0:0;0;1=1=0>0>0@0A0A1A1F1F1F1:G0XG1ZG1G1H0H0I0I0tK0vK0xK0N0N0O0O16S1JS0^S0S0S0"0X1]0]0]1]1r^0^0^0^1^0^1^0^1^0^1^1_1_0_1_0H_0L_0h_1n_1_0_1_1_1_0_0_1_1 `0`1`1`0(`0<`0B`1f`0h`0`1`1`0`1`1`1`0`1`0a0a0a1a1Ba0D`b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd|B  S A? 2BEQU9ygFa`!YBEQU9ygFT@ `W0'xcdd``Vgd``beV dX,XĐ )ɁSRcgb x@؀깡jx|K2B* R .͔ `W01d++&104\ F\L 8@|Vj&2n Mp~ *_‡f#AClb(ΟŌwclE W&00aI+phae8ACwLLJ% ̀iSDd B  S A? 2,4CWNa`!,4CWNa`xJAg._g>DDEHRbaF,!੐*I  VVbb#H'2&<  ,2/:b2έLCI`r~V e^L 6KYK'4UO*hd%0p&h_Xv{d+V9K'20&>'(8q[{In JFV`9}Y9'yqDԐ{>/*JnU܃ɐA`0kgݝyUܒ|EYǀwRY8-yiؖ<=7 aURo8C+`x'F2^L j0BR-þ{ DdTB  S A? 2dט6>R: MP@`!8ט6>R: MP@ 0= XJxUPKJA}U3M2(u5p@rEL.a mdv9.\u}Ne!VLtWUk>4vXPY"cdtb̀Rwy_sʣ֑DO)VlR<)xka1\a0`a0a1a0b1b0"b0fb1lb0b1b0b0c1"c0|c1c0c0*d10d0d1d0d0d0z0fz1pz1z1z0z0z0z1z1z1z0z0z0z1z1{0{0"{1V{0d{0v{1{0{1{0{0|1*|02|140|0}0F~00100101010Ƃ1ւ0܂00^1`0<0>00011>10011@1҇1\10<0>1B0܉0މ1x11h0010ލ000l0l0l00000GTimes New Roman5Symbol3& Arial?5 Courier NewI& : ?Arial Unicode MS"1h$rFsU @!!4YOYNWIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF QUEUING SYSTEM FUNCTIONING Pomorski fakultet u RijeciPomorski fakultet u Rijeci FCompObjNativefObjInfo74F-F2.¶F+ʚ*q5j|wtPwEzws7}6]wP5Q5gd)]wޖb;lSt/;DdTB  S A? 2dAܖs @`!8Aܖs   XJxUPAJP}3I b .)؝B/P PhZ.G…+oнx^wf{濙!4o цk+Kd sΘ+e*Mյ8<8~38-B$C7fia8Y=7/[kdm1QG LYbjbjَ ]N]ϒϒCCCW1111W=@)": F       $}q@ z CNNN Nϒϒ;LNNNNϒRC WWϒϒϒϒN NN0zG!"C ql ^W.1N3 jRoot Entry Fj} ^@>Data |TWordDocumentObjectPooljU-U"4N3_ {$o/i^Wɬ75ŷ;̇|Foo|)M]?,.: O}-Uws 2B`]!Q\%)6) g?j;[DdB  S A? 2e> `[/Y~r`!e> `[/Y~r `gxKK@g&+)|BAC g'+h  M[hAzZG(^ċC?@^ųqg6.!am;/`uQ` xe.[ڄ('HQI7J]W .D| <3e==swƍ5EWQ?x\ ^%XF}i;֊]nv3l? ^k/y9S,<=oY][5I7 yI3X| ZZg29V&0K/S]"xQxz(cx, r̡~& ۹)Ie'Ñ5xzy[ Q1 X\߼cDdB  S A? 2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8wOlePres000veof KOI2002.engl( Ole10Nativeve)*+,-./0FD1TableoSummaryInformation(10 OF QUEUING SYSTEM FUNCTIONING MPAPomorski fakultet u RijeciComo Normal.dotkPomorski fakultet u RijeciC26oMicrosoft Word 8.0 @@FL|@^U @՜.+,D՜.+,T hp  4Pomorski fakulte Rijeka!YO  XIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF QUEUING SYSTEM FUNCTIONING Title$(RZ _PID_GUID _PID_HLINKSAN{B70AFAA0-3878-11D7-99E6-0080AD83B57F}Ah}[mailto:zenzerov@pfri.hr  FMicrosoft Word Document MSWoࡱ FMicrosoft Equation Equation Equation9qࡱ> ࡱ> Oh+'0 ,@ dp   XIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/P     56<GLMRWXYZ[\]cimnopqrstuvwxyz{|}~l3n344$4&4D4F4T4V4x4z44444#$  #$t#$  #$#$t#  &B     #$ !0 &    !$F4H4J4T4V4t4v4z4|444444444444444l5n55555555555556666.6뻴󡘭󌃭wnjEHUmH j=4A CJUVmH j@EHUmH j X@A CJUVmHjEHUmH j X@A CJUVmH jUmH  jyEHUjK'B CJUV jEHUjK'B CJUV jCJU jEHU jEHUCJCJmH mH j EHUmH )4466~999p;r;;;\=^=>>>>>>>$$ %$$ 9r $$ u$H$wY$$  $ $@    B$6$#$v(nm$S7^16=4cMӬ:y"-x?$_DdB   S A ?  2ܩlg)C-l`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/ml%##Ozp!'6Et32 }QeDdB   S A?  2\E$˖`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z9@9~999999999999999998:::<:::::::r;t;v;;;;;;;;&<(<====@=B=\=p======D>F>f>h>jz#&A 6CJUVmH j6CJUmH 6CJH*mH  6CJmH CJmH  jmmH jCJEHUjK'B UV jU6mH  jH*6H*mH mH  jlmH :h>j>l>v>x>>>>>>AdBfBBBBBBBBBBBBBCC&D(DFDHDJDLDVDXDvDxD¿¹°¥°¹°yn°cjnCJUVmH jCJEHUmH jJCJUVmH jCJEHUmH j&CJUVmH jCJEHUmH jCJUVmH jCJUmH  CJH*mH mHCJmH jo6CJEHUmH jy#&A 6CJUVmH  6CJmH j6CJUmH j6CJEHUmH $>>>>>>?? ???d__$$$$Tl4     <4 ,|$           $$ ? ?,?8?D?P?\?h?t????f$$Tl4     <4 ,|$           $$ ????????????f$$Tl4     <4 ,|$$$ O_z;ZxgԵWMOX8/Ynz1B(DdB   S A ?  28Q5 V04z?z`!8Q5 V04z?@x5O; P Vbi΀ BB `tXXy`/ffg >]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ږDd????? @@"@.@:@F@R@$$ R@T@\@^@`@b@d@p@|@@@@kffffffffff$$$$Tl4     <4 ,|$ @@@@@@@@@@@@f$$Tl4     <4 ,|$$$ @@@@AA A AAAAAf$$Tl4     <4 ,|$$$ A*A6ABADALANAPARATAVAXAfx$$Tl4     <4 ,|$$$ B   S A ?  2ݹM*mgPMmU)`!ݹM*mgPMmU̬9xO@߽BRm&dPbI qp0bl l:lb4NY޵4x͵s}?zeP`h!Y!>1u]2FJvc rk\5 .[W|ni&\je EZ )Q1üø YCܺI;?=3&4#۪$Wz.`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9XAZAfArA~AAAAAAAAfd$$Tl4     <4 ,|$$$ AAAAAAAAAAAAfP$$Tl4     <4 ,|$$$ AAAAAAAAAAZG_\\W$$$$Tl4     <4 ,|$$$$$ xDzD|DPEREpErEtEvE|F~FFFFFZG\GPIRInIpIIIIǼ湳泹5mH  5CJmH mH jCJEHUmH jAA UVmHjCJEHUmH jAA UVmHCJmH jCJUmH jCJEHUmH ZGNIPIRIIIII$$#$nW$$W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u;SDd|B  S A ? 2Ǽ-Y|#8|V_מ`!WǼ-Y|#8|V>`e 0%xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L !PQQQvSxSSSVXXXYrZtZ`[b[[[\]]^^^$$$$h$ & F $ n$$$^^^^_J_L_N_P_R_T_Z_`_f_8R$$Tl4r `       $$$$ f_h_n_______$$$h$$Tl4֞ 5         ___`*`.`2`6`:`$$$f$$Tl֞ 5         :`<`B`R`n`r`````````a aa$$$f$$Tl֞ 5   ~ Ay 9W;H&׀W]kA?60n, Mne$VIp7eZ`}|7 ~hI9 L] RzΟv-4 `PcdbR ,.Iexf:uSDdB  S A? 2{<ŏW&n oW`!O<ŏW&n o0 ؛1xOKA߼l4Yc4jҦsiCBBcj x= ^<'~C Xp;of3I;a6g{v-|V>1<3z2_;uv, Tk##p8W @ :jXXaq(8#⫭X}ﺫ`Vo3>L>' uA]\$1/c^g&(P{H>v.u.t}ZMS?0_,i/+(j|*V 'Y~2N]ykPrݰFF*ټiEIVn\g3&O&__*F4y~cMȦHDs2_ *SI/q'Ou>d/1ScFMiqVt⹠)/\|äi;\3Qգ+#ŷH k\cf1ZXoǩDd@j````abadafa b bbbb~cccddeeee CJH*mH 6CJH*mH  jrCJmH  6CJmH CJmH aaaaaFajana~aaaaaab$b4b0l$f$$Tl֞ 5  $$4bDbTbdbfblbbbbb ccc"ccccl$f$$Tl֞ 5  $$cccccdd(d*d0dddddddd$$f$$Tl֞ 5  $$de$e:e p .1  ` & MathType@ Symbol-!r"System-5Dd<  C A2gw|. JP"Mn#Qw`!gw|. JP"Mn#Q`!x51 @EL\%$b K-P!`a0h<0^0Յa7)4s6hu$KT~L\wlGȱٷǭo*`Xۇ:܅rӗ>Oѻ0:b t׶bK~Y;a DdHB  S A? 2ƛyYj`!ƛyYj@%9]xkAIblccֈE[miBŃ^*@ ƪ-J?E/"%zEmKn/6qgfwI un{3$B=OI6A6 p `argC/v`tgB Ỏ.lQng'3 wl7ƒ 8"A;f)w*˲a_vϗ}Y=.|-\,^$Zu޼\}bNfR Q?eAϊK~[`,)0_ͩ69P;t*;t1w跨2`|J:M@O/*dB{[VgKiՕ,0ؤ[I"}az nLweF=&9Hq,= ܄o~_٣4 jd nzݟQܻrG'~=#Yƫ^KVfbH8cCSy﹯y|yF7![)$/9JU9gD?oV60~a)F[.hsP;=}Ĥ\Y\`u^T%DdhB  S A? 2Ra,YeG%k}H`!cRa,YeG%4@4 |1xcdd``bd``beV dX,XĐ Ɂ A?d- πjx|K2B* R. `W01d++&104\ F\ Śp~8 g5`I? E90O@ 3P"t=ٽ?^qD痃ApZa ZBF6: %_&8DdB  S A? 22M}`!2M}ߌ` xJAgg/_`qTB*Ԃ"&`ψ X,|YYZYZ,}&eIrBc7B 4bj,KMWA+[bWJ(B42صNҋZ/@ G񋲞te&d:uivo=~:ηWh.7"^>1͖z0gDdB  S A? 2N- X1LWv-'Tl`!N- X1LWv-'Teeee$f$$Tl֞ 5         <>7 ؤbI(.k$F@> =p|Ĥ\Y\u`uDRDyK zenzerov@pfri.hryK 0mailto:zenzerov@pfri.hrDd<  C A2'ח }_`!'ח } Ƚt1$FK4&n e(aI9 L] RzΟ v-4Ĺ(v0o(121)W2Cw33XQt Dd|B   S A? 2sMd|⥗b@tOJ`!GMd|⥗b@t` 0xQAJP}3I .ܩ^V-J@$A<t)\{ƕ`~d C .iH5Y;_lB\Mvh&{L]ϹW :@"Ă_{: @-i7_ i LŗƃR>RhOle735882 FCompObjfObjInfoNative FMicrosoft Equation Equation Equation9q Maࡱ> 5$II k s "Oh+'0 ,@ dp   XIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCYXsxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03@ d3DdB  S A? 2Dxv~b(`r{EyӲ`!qDxv~b(`r{E@'<]?xkA߼Mfun5TkwڦD"^Uڂ&^DO"=x_ ^=ɻV6ծc3g{y3ofo(>0Ɋ7/2zqzz< 3J5;r&!A 梵#iࡐ'>X\\Yw "OEXgZ{Xdk\~}[Sþ<Fp$. ݬtn&RY+>=_ET92ʑ" (f0a ?ǵ9g96}X#hz*, eho_A{GUa 􊡩EKբnjH^HH-KWΌt}leU5B<푳f4TsگL'(g|4$y͌惄3yknoy4{7ԿRQj:BiNFviLK2mvP5OI#=+ӶrNLO{β?fQ]'ɾ`TѮ<\C.Dq~]eDd= p .1    & MathType @Symbol-!l"System-E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]4;VdedpdL&x `6W&@| D@2_@ l4 fon Equation.29q2ܩlg)C-r`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/27)?b.PH+22At 0py{v221)W2At1ufDd|B  S A? 2,b;L \`!,b;L \Xqxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03^8Dd B  S A? 2SkTbl _c~k`!vSkTbl _cj18DxAkA{idK7M&AJcEЀ/BRcTjB)Z.DzY< D ׶83owI:a7{޼Y [J<=W<,HnWYj8,3:GG âwj`F+Q -./Zk \`C qyb#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_Hol27)?b.PH+22At 0py{v221)W2At1ufDd< $ C A!#257o:vᡷi蓳y<̽Ƚg*‡V$}ڠW\[?geO]VA^&jQo50_͸WDdDB  S A? 2,.ѳ0`!.ѳ0`@ *Э xMLAfPm$=H84@T4izxыGㅓpCO!c4A;3kҦyofgvg~L(aBڱAHCwq5)lN jwxg􍑙4B  S A? 2BEQU9ygFa`!YBEQU9ygFT@ `W0'xcdd``Vgd``beV dX,XĐ )ɁSRcgb x@؀깡jx|K2B* R .͔ `W01d++&104\ F\L 8@|Vj&2n Mp~ *_‡f#AClb(ΟŌwclE W&00aI+phae8ACwLLJ% ̀iSDd B  S A? 2,4CWNa,`!,4CWNa`xJAg._g>DDEHRbaF,!੐*I  VVbb#H'2&<  ,2/:b2έLCI`r~V e^L 6KYK'4UO*hd%0p&h_Xv{d+V9K'20&>'(8q[{In JFV`9}Y9'yqDԐ{>/*JnU܃ɐA`0kgݝyUܒ|EYǀwRY8-yiؖ<=7 aURo8C+`x'F2^L j0BR-þ{ DdTB  S A? 2dט6>R: MP@ `!8ט6>R: MP@ 0= XJxUPKJA}U3M2(u5p@rEL.a mdv9.\u}Ne!VLtWUk>4vXPY"cdtb̀Rwy_sʣ֑DOB73"S`! 7oB73"``:!xcdd``> @bD"L1JE `x,56~ĒʂT؞L 1L`^ $37X/\!(?71d.PH+22]2)Q$9@+ss >? cbNb"#D#{8=padbR ,.Ie`Cw3XͲ,Dd B % S A"? $2SG^R2 EʨhqU`!SG^R2 Eʨh!x/CAgfҧ6ơH_!p'$M|=DԩKp8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd B & S A#? %2Vl3S`%X`!Vl3S`ŴPt]x;KAgf/9saac @s񑠤E?U,m,D$O V*;5cw! a=FlY <9Q :Ny j[IKk2:$HJnKVܕiAL6bs̵;&ԊӨ^G%>E;nO4W2FGig*ҤV־žϔZh_Ҭ}PD,VR-mopW#Y~sglo8j!xK#O2.9|;Gs+YCr_b#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_Holm`$wz2߼~:62H^>T*i?OUTT|Q;Kagʇ(8W: [ A]XM5LM3Nw"/a5 Equation@ XHP LaserJet 4/4MH Ma METAFILEPICT`N< u .1  @ & MathType DTimes New Roman-!X"System-Dd<  C A2 :xGv1.m`!:xGv1.m@Rx51 @E%$ZE ;o`aZئX"*$"r o'"  +t/?<%PQ2P\%`Mv VYyU %Rs^R5w\s[k{K7<;yS> F}xh:E۪(mkQ}RDdXhB  S A? 2a>/h|YJ HXD=_`!*$KQ^Lxcdd`` @bD"L1JE `x0`41c@ UXRY`vo`0L`A $37X/\!(?71a-%@y mĕ]h&0@penR~D#'0b &1Mr` f  `@]';F&&\wc82 _ADd B * S A'? )2a"oD@^~a`!Va" FMicrosoft Equation 3.0 DS Equation Equation.39qYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5,H`!-WQ! ᵁo,F=!`h(3x FMicrosoft Equation 3.0 DS Equation Equation.39q^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *Ii[It#Qn[kQ,S PrG N => ͭrnODd` m 1 =m 2 =m 2 h:V'BLa^K`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\9<II  1 = 2 =+ 4 6 "16 5 "8 4  2 +6 3  3 +12 2  4 +6 5 4 2  9. `W01d++&104\ F\ Śp~8 g5`I? E90O@ 3t1$FK4&n e(aI9 L] RoD@$8$x=hA߼>ubu%]4x v&98xk;4v~VXBDHa! :&뼙aV2ϛM7ZiQ aj91-Uz y#3w$!I(ѶjkOUH3W׻~^ `̠oN L4*38ZDJc>~H>~|7rv*6[ _Vǻz lr@VHEi#>[eJj)_^񇒸fs 9=C\>˝ɝůYߙ!^|}Teǃ |2Su2& eOsG߹TmQN47ۀqEjof~$UC' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z/h|YJ HXD@|xcdd`` @bD"L1JE `x0 Yjl R A@v n`f` UXRYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5`!-WQ! ᵁo,F=!`h(3x=OAg 㘏 E "A "i [QDV, c+ B(5KhHaQ"J"I+)ݻխd}g!"/x<'^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *Ii[It#Qn[kQ,S PrG N => ͭrnODd|B  S A? 2 h:V'BLa^z`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?I 8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd BDdB , S A ? +28Q5 V04z?Ef`!8Q5 V04z?@x5O; P Vbi΀ BB `tXXy`/ffg >]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ڿDdB  FMicrosoft Equation 3.0 DS Equation Equation.39qDdDB   S A ?  2VG3Im1f()Kg2_`!*G3Im1f()Kgxcdd`` @bD"L1JE `x0.`41c@ UXRY`vo`0L`A $37X/\!(?71a+%@y mĕc]h&0@penR~ FMicrosoft Equation 3.0 DS Equation Equation.39qB   S A ?  2=0[/ zFua`!0[/ zF@q0]xM(DQ=ah1$5cRHQSdj6Ž,[[k EyۻrלsϻA`A3ЪOɲăICg%'ϮƠFaF <*G:6LSVzoTL'FjS ` l 1 =l 2 =loԋԚz3v[qɛS1\fB)=YIOojB\Ф|XtN'>j!xK#O2.9|;Gs+YCr_ `[/Y~r`!e> `[/Y~r `gxKK@g&+)|BAC g'+h  M[hAzZG(^ċC?@^ųqg6.!am;/`uQ` xe.[ڄ('HQI7J]W .D| <3e==swƍ5EWQ?x\ ^%XF}i;֊]nv3l? ^k/y9S,<=oY][5I7 yI3X| ZZg29V&0K/S]"xQxz(cx, r̡~& ۹)Ie'Ñ5xzy[ Q1 X\߼cDdB  S A? 2\E$#`!\E$@Hx5O ` ,NনS} - v$>C'2) #o0U yl!l`! #o0U yl!`!Hx5O @]#` v@A?{so|phϮJV50*)tR -X'B$]T,Ts/vak&xAp!cDUjxbt.%sEa;C'Ren.퓘۳C3)?/߽DRPI,/DdB  S A? 2N̈{uin` FMicrosoft Equation 3.0 DS Equation Equation.39qK)Vx̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[T4I\I B=1"Times New Roman}L Arial|Q (S)Q}Dd<  C A2"CUWzq`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufٖ Equation $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_N̈{ui`!mN̈{Ì0];xMHQͮcJfe!hM JPK)Vx̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[^k!O~Sf،ʥMRdF5t޷DDh1ɗIZ~/@%MtJk,,A@cݪ.Q#uriJdxOC8QU<84bɖ Q}Dd< / C A*.2"CUWzl`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}447 ؤbI(.k$F@> =p|]4;VdedpdL&x ` ct #t u RijeciComo Normal.dotkPomorski fakultet u RijeciC21oMicrosoft Word 8.0 @p@FL|@RL i@՜.+,D՜.+,T hp  4Pomorski fakulte Rijeka O  r 8=`;+KRs ?u3'@j35Dd< 0 C A+/2J8{Q[YxT_Itn`!J8{Q[YxT_I `Ƚ!xcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufOC5 Equation@ l7)@ m< Equation9qUEUING SYSTEM FUNCTIONING Title$(RZ _PID_GUID _PID_HLINKSAN{B70AFAA0-3878-11D7-99E6-0080AD83B57F}Ah}[mailto:zenzerov@pfri.hr  FMicrosoft Word Document MSWo9 JHI  .1  ` & MathType@DTimes New Roman~ -!A@!B@lSymbol-!-@!=@Times New Roman~ -!0"System-7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$_DdB   S A ?  2ܩlg)C-`!ܩlg)C- ``kx=K`.M?NЂढ)V(4Ђvtpե8*8:g{ox{.!,SQEEh*" ڦ?N3<!b'p(^݉0vbn{^]>(Se/,-*fstޢL/ Wa;l(yZCٸx5 E@RDxgj`fk?k#&=xywd3S"~/ml%##Ozp!'6Et32 }QeDdB   S A?  2\E$`!\E$@Hx5O ` ,NনS} - v$>C' $/9. 8w\֮(!UU2! _pAkRI*!nR~  ct # METAFILEPICT=Y=+ p .1    & MathType @Symbol-!l"System-Dd< 1 C A02'ח }q`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufٖ Equation@ l7) ct # METAFILEPICT=Y=! p .1    & MathType @Symbol-!l"System-Dd< 3 C A22'ח }w`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDdDhB 5 S A,? 42`>4427)?b.PH+22At 0py{v221)W2At1ufDd< $ C A!s m Ma....... XXo(.........hho(.o(..$0$o(...0o(....   o( .....  FMicrosoft Equation 3.0 DS Equation Equation.39q..... F`Fo(........ XXo(.........hh.hh.hh^h`o()hh[]}QlR1$5j#MV M \PsClԿ `P8cdbR ,.Iex:f:~DDdDhB 6 S A-? 52`T7 ؤ  .1  `` & MathType@ Times New RomanM-!S@TSymbol-!=@Times New RomanM-!2"System-...0@ lINFOon Equation.39q  o( ...... `o(....... F`Fo(........ XXo(......... hho(.88o(.#257oB73"`! 7oB73"``:!xcdd``> @bD"L1JE `x,56~ĒʂT؞L 1L`^ $37X/\!(?71d.PH+22]2)Q$9@+ss >? cbNb"#D#{8=padbR ,.Ie`Cw3XͲ,Dd B % S A"? $2SG^R2 Eʨh`!SG^R2 Eʨh!x/CAgfҧ6ơH_!p'$M|=DԩKp8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd B & S A#? %2Vl3S`:`!Vl3S`ŴPt]x;KAgf/9saac @s񑠤E?U,m,D$O V*;5cw! a=FlY <9Q :Ny j[IKk2:$HJnKVܕiAL6bs̵;&ԊӨ^G%>E;nO4W2FGig*ҤV־žϔZh_Ҭ}PD,VR-mopW#Y~sglo8xVxxxxxxxxxT$$Tl4r#(             $$$$xxxxxxyyy yyTX`P$$Tlr#(   $$P$$Tlr#(         y y0y2y8yyyyyyyyzz zzz*zBzRzhzx$x$P$$Tlr#(   $$hzjzpztz|zzzzzzQXP$$Tlr#(   $$$x$P$$Tlr+' 0   zzzzzzzz},rt$$ X$$$$P$$Tlr#(        $$ʀ܀ހ ($L\'$$Tl     T #$$E$$Tl    \T #$$(6BDF&Ƃփ؃ڃ$&ćƇrtƋȋʋ̋$$$ & F$ & F$'$$Tl     T #$$gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ږD&Z$$ & F $$ FMicrosoft Equation 3.0 DS Equation Equation.39q0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.....& [$@$NormalmH 4@4 Heading 1$@&CJmHD D Heading 2$$@& CJmHnH 8`8 Heading 4 $$@&mH nH <A@<Default Paragraph Font606 List Bullet  & FmH :6: List Bullet 2  & FmH :7: List Bullet 3  & FmH :8": List Bullet 4  & FmH :92: List Bullet 5  & FmH 61B6 List Number  & FmH ::R: List Number 2  & FmH :;b: List Number 3  & FmH :<r: List Number 4  & F mH :=: List Number 5  & F mH .B@. Body TextCJmH(U@( Hyperlink>*B*6@6 Normal IndentmH JOJ HTML TypewriterCJOJPJQJ^JaJo(HR@HBody Text Indent 2 $CJmH6P@6 Body Text 2$CJmHLS@LBody Text Indent 3 $ 5CJmH6D@6 List Continue xDC@DBody Text Indent !$CJmH$/@"$List "(2@2(List 2 #6xOBx HTML Preformatted7$ 2( Px 4 #\'*.25@9 OJPJQJ0 @R0Footer % 9r nH 7N7N\]o#9^pqS Y   3?~iop]^de VW^_flm0129:NOPefELS+,56PjkGH !!!!""?#@#I#K#O#S#W#[#_#c#g#k#o#s#t#x#y#############################$$ $$$$$$$ $!$'$-$3$9$?$E$F$J$K$L$M$N$O$U$[$a$g$m$n$r$s$t$u$v$w$x$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'((((((()))4*5**+*+F+G+++2,k,l,,----5///?001111110222;3<3=3A3K3P3l3333333333333333333333333344 444#4+434;4<4?4J4]4e4g4i4k4m4n4q44444444444445 5555F5O5W5_5g5o5p5s5555555555555+60686D6L6X6`6l6t66666666666669:<<$>>D??O@P@@@@@@@@AAA0A9A:A=A?AJARAZA[A^A`AkAmAoApAsAuAwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABBB#B$B'B)B-B5BABIBTBUBYB\B^BdBjBkBlBqCDDD(E)E3E>EIETE]E^E`EbEdEfEgEjEoEtEyEzE}EEEEEEFRFFFFFFHHHH(J)JJJJJJJ*K^KoLMM/N0N1N2N8N  !!!!!!!! """"!!!#########%#")"))))))))))))))))))) ) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ) ) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ) )))$)$)$)$)$)$)$)$)$)$)$)$)$)$) $) $) $) $) $) $)$$$Ew#$(-:IjN"$/27<Dj{X!#'24D<XBN^^y;?ABDEHJLY`oxJMNPQSUWXdktzSWP$&V**+h++ ,3,U,o,,,0B5;";d;;;<?==]>'HHIWIIILMR>^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz3`]4y5䱐Is_a^^9'Vwbg Ы L=)\u=*+Mos βVX:SM fpN)Q5\Pg4mEE8z!wQAY$؊$Xi%^z5ӾyDdDB ' S A$? &2VG3Im1f()Kg2`!*G3Im1f()Kgxcdd`` @bD"L1JE `x0.`41c@ UXRY`vo`0L`A $37X/\!(?71a+%@y mĕc]h&0@penR~D#'0b &1Mr` f  `@]';F&&\wc8L B DdB ( S A%? '2=0[/ zF`!0[/ zF@q0]xM(DQ=ah1$5cRHQSdj6Ž,[[k EyۻrלsϻA`A3ЪOɲăICg%'ϮƠFaF <*G:6LSVzoTL'FjS Ͼ9*{o<HƔ/R3j!xK#O2.9|;Gs+YCr_^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz(̋<>@CFIKMNOPQSTUVWXZ\^_abdfgijlmpqstvwzKLORTVYZ[\]^_`abcefghijlmnopqrsuvwxy{`#,2:;x<=FHuIL_PY=GR[]cehknruyUnknownPomorski fakultet u Rijeci$&fvx}5EGM]_1ACIY[oSce>LNR`b!!!#"#$#*#;#=#9%I%K%Q%a%c%&&&&*&,&&&&-'='?'7NX:::::::::::::::::::::::::::::::::::::/X2$_kW<󒇗pKe2$^4.lƋjwL&@0(  B S  ?7N _Hlt507075964~8N8NPomorski fakultet u RijeciC:\Radovi\KOI2002.engl.docPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.engl2|2}d5~N\ \TNTYl̩d<A `Xhtfl=M #fX t  bwp i }O\ ipm9'B!Brd" b4%!j%jm&dXE& J,-. U8$Y< [m=hL'I'? "C SEGnE z=KwfLN<:jNN lPvbz'~X/>8=X1|(Y [ B]1;l]SgMy^ @aW_jbE.+hp) nds/:v\+w >LQxv@x .... OJQJo( OJQJo( OJQJo( OJQJo(hh. hhOJQJo( hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh.hh^h`o()hh[]hh.hh.hh^h`5o(.hh^h`5o(..0^`05o(...0^`05o(.... 88^8`5o( ..... 88^8`5o( ...... `^``5o(....... `^``5o(........ ^`5o(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.88o(..p0po(...@ 0@ o(.... xxo( ..... HHo( ...... `o(....... P`Po(........ o(.........hh.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`562.1.hh.88^8`o(.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho()hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........^`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`o(. hh^h`OJQJo(hh^h`o(. Po(.YPYo(.."0"o(...0o(....   o( .....   o( ...... `o(....... ?`?o(........ PPo(.........hho() hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`5o(.--^-`o(.hho()2~}|-."C%jm&}Ot lP|(Yz=K+wvJ,[ B]=Xird"E&#fX=MI'?jNNbw9'B!@a ixv@xY<+hpMy^;l]fb4%[m=U8z'~X_jbfLNSEGnds2@''8~u'' PR_3R   2nocd V/de%DEFKL, !2!Q!!!"""@#@$$$$G'H'X'''''2223:3;3<3=3@3A3J3K3O3P3d3e3k3l3333333333333333334444<4?4F4I4J4M4X4\4]4d4e4n4q444444444455A5F5N5p5s555555'6+6/6X6666666K@L@@@@@@@@@@@@AAAA"A'A/A0A=A?ADAEAIAJA^A`AeAjAsAAAAAAAAAAAkBDDD'E(E)E2E7E:EBEEEMEPEUEEEFFFJJJJKLN/N2N3N5N6N7N@"@"@"@@AA@A@AAA@Z@\AH@@@@@@@@@@@ @ @4"@"AD$@$@(@(A/@/A/Al0@0A0A0@0@0@1@2@"2@$2@&2@D2@z2A7A7@7@7A7A68A8@8@9@9A;A;@<@<@>@?@?A?ADADADA:E@XEAZE@E@[@[A[AX\@\@\@\A\@\A\@\A\@\A\A\A\@\A\@.]@2]@N]AT]Al]@p]Av]A]A]@]@]A]A]@]A]A^@^@"^@(^AL^@N^@^A^A^@^A^A^A^@^A^@^@^@^A_A(_@*_AB_@F_@_A_@_A_@`@L`AR`@`A`@`@aAa@baAla@ta@bAb@pbAxb@b@b@"cA*c@c@c@c@cAv@v@Rw@TwAVw@w@w@wAw@xAx@xAx@"x@$x@LxAVxAfxApx@x@x@xAxAxAx@x@x@xAxAx@x@yA`!ݹM*mgPMmU̬9xO@߽BRm&dPbI qp0bl l:lb4NY޵4x͵s}?zeP`h!Y!>1u]2FJvc rk\5 .[W|ni&\je EZ )Q1üø YCܺI;?=3&4#۪$Wz.`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L !0veof KOI2002.engl( Ole10Nativeve)*+,-./0FD1TableoSummaryInformation( FMicrosoft Equation 3.0 DS Equation Equation.39q CompObjive()*+,-./0Fj@0Tablen NativeIJKLMNOPa_1094735790F`U U7f   y789:;<=>?@ABCDEFGHIJKLMNP6QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~` A=SL Q (1)Normal.dotkPomorski fakultet u RijeciC24oMicrosoft Word 8.0 @8M%@FL|@( XO {@՜.+,D՜.+,T hp  4Pomorski fakulte Rijeka!/O  9LI$oI Times New Roman~A=~S"~L Q (1)EM FUNCTIONING Title$(RZ _PID_GUID _PID_HLINKSAN{B70AFAA0-3878-11D7-99E6-0080AD83B57F}Ah}[mailto:zenzerov@pfri.hr  FMicrosoft Word Document MSWo ~ Ay 9W/;H& 7| p0泂4b[!&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u;SDd|B  S A ? 2Ǽ-Y|#8|V_`!WǼ-Y|#8|V>`e 0%xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT(.456;<=>?@EJKQ\abglmnopqrx~ FMicrosoft Equation 3.0 DS Equation Equation.39qA$XaI$XDd_1094734303FaI$XaI$X_1094734308 FaI$XaI$X _1094734396FaI$XaI$X f094202371e$.//,0 F 8$X 8$XDEq_1094734238e FA$XA$X1T_1094734241FA$XA$X]S_1094734247ation(FA$XA$X(*` B=1L Q (S)dEquation Native FXOleObj CompObjNative]9LI4I Times New Roman~B=1"~L Q (~S) ~35;a#L ! ~ Ay 9W;H&׀W]kA?60n, Mne$VIp7eZ`}|7 ~hI9 L] RzΟv-4 `PcdbR ,.Iexf:uSDdB  S A? 2{<ŏW&n oW!`!O<ŏW&n o0 ؛1xOKA߼l4Yc4jҦsiCBBcj x= ^<'~C Xp;of3I;a6g{v-|V>1<3z2_;uv, Tk##p8W @ :jXXaq(8#⫭X}ﺫ`Vo3>L>' uA]\$1/c^g&(P{H>v.u.t}ZMS?0_,i/+(j|*V 'Y~2N]ykPrݰFF*ټiEIVn\g3&O&__*F4y~cMȦHDs2_ *SI/q'Ou>d/1ScFMiqVt⹠)/\|äi;\3Qգ+#ŷH k\cf1ZXoǩDd@ative 0컂 X Olenfoive()*+,-./0 F@CompObjiveveIJKLMNOPfObjInfoNativeF FMicrosoft Equation Equation Equation9q CompObjive()*+,-./0FfObjInfo51FOle10NativedV4@  .1   & MathType@ Symbol-!r!r Symbol-!*Symbol-!=Times New Roman-!/Times New RomanM-!S"System-;dOle10NativeFDEquation Native ,Olenfo ` r * =r/SQc$XQc$XX_1094735820S FQc$XQc$X_1094830536  O FQc$XQc$X_1109871577KFj$Xj$Xf@ <  C A2P|s7y nR,$`!$|s7y nR, xcdd``cd``beV dX,$XĐ +7XRYaj`e~35[0d P@penR~^](;Vded( #6 *o.#duF9(0b2I $37X/\!(?71N飘xDF&2rc0X'ć`Q=cdbR ,.Ie`Ew3X?@r Equation@ rHP LaserJet 4/4MH Ma METAFILEPICT|> p .1  ` & MathType@ Symbol-!r"System-5Dd<  C A2gw|. JP"Mn#Q'`!gw|. JP"Mn#Q`!x51 @EL\%$b K-P!`a0h<0^0Յa7)4s6hu$KT~L\wlGȱٷǭo*`Xۇ:܅rӗ>Oѻ0:b t׶bK~Y;a DdHB  S A? 2ƛyYj)`!ƛyYj@%9]xkAIblccֈE[miBŃ^*@ ƪ-J?E/"%zEmKn/6qgfwI un{3$B=OI6A6 p `argC/v`tgB Ỏ.lQng'3 wl7ƒ 8"A;f)w*˲a_vϗ}Y=.|-\,^$Zu޼\}bNfR Q?eAϊK~[`,)0_ͩ69P;t*;t1w跨2`|J:M@O/*dB{[VgKiՕ,0ؤ[I"}az nLweF=&9Hq,= ܄o~_٣4 jd nzݟQܻrG'~=#Yƫ^KVfbH8cCSy﹯y|yF7![)$/9JU9gD?oVP"t=ٽ?^qD痃ApZa ZBF6: %_&8DdB  S A? 22M},`!2M}ߌ` xJAgg/_`qTB*Ԃ"&`ψ X,|YYZYZ,}&eIrBc7B 4bj,KMWA+[bWJ(B42صNҋZ/@ G񋲞te&d:uivo=~:ηWh.7"^>1͖z0gDdB  S A? 2N- X1LWv-'T1`!N0iveyhOle10NativeFdOlenfo CompObjNativez}f FMicrosoft Equation 2.0 DS Equation Equation.29qEquation Native F<OleObj   CompObjvx]@ bjInfoqEquation Native <Olenfo CompObjNativertf 8H>>  7Gf *lm Ole10Native()*+,-./0FdOle0Native CompObj77npFf- X1LWv-'TXsxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03@ d3DdB  S A? 2Dxv~b(`r{Ey2`!qDxv~b(`r{E@'<]?xkA߼Mfun5TkwڦD"^Uڂ&^DO"=x_ ^=ɻV6ծc3g{y3ofo(>0Ɋ7/2zqzz< 3J5;r&!A 梵#iࡐ'>X\\Yw "OEXgZ{Xdk\~}[Sþ<Fp$. ݬtn&RY+>=_ET92ʑ" (f0a ?ǵ9g96}X#hz*, eho_A{GUa 􊡩EKբnjH^HH-KWΌt}leU5B<푳f4TsگL'(g|4$y͌惄3yknoy4{7ԿRQj:BiNFviLK2mvP5OI#=+ӶrNLO{β?fQ]'ɾ`TѮ<\C.Dq~]eDdative 0컂 oh Ole735820'()*+,-./0  F~@CompObjFGHIJKLMNOPeh|fObjInfoive{ FMicrosoft Equation 2.0 DS Equation Equation.29qvdCompObj38`cFtfObjInfosOle10NativebdqdompObjNative 0컂[^lf ObjInfoive()*+,-./0Fk@Ole10NativeveIJKLMNOP]_idEquation Native Fgp >H..  'Gf *lc Ole10Native()*+,-./0XZFadEquation Native _hOleObjive nB  S A? 2,b;L \6`!,b;L \Xqxcdd```>0 ĜL  312Ec21BUs30`|6GA?H0rCx|K2B* R\``w03^8Dd B  S A? 2SkTbl _c~7`!vSkTbl _cj18DxAkA{idK7M&AJcEЀ/BRcTjB)Z.DzY< D ׶83owI:a7{޼Y [J<=W<,HnWYj8,3:GG âwj`F+Q -./Zk \`C qyb#f~H돎ғQsfϽ<.wGYZM{lxGHOs%Oj.6Un"֍;@IxkNZZMZ}AfVBǤc:Kދyeޏ=2jZogz_:޳}Y |)|]$oȼ%gez$/vܰ_HolCompObjNativeionOle0NativeFHF<f@ wxg􍑙4k4k-sWԆr8Β3[{m% /Lm`2E2[ǻZ;̊_a+YPfE(fm ' y $|kR[WJ˸-$i*DFnfSx&50F.jFA0aIK)z<;:qXK QI7PY=b 92/|5 ʝ*+mk~PMtUZBTWGb\9lљِʻAT.p90,8/?%U)kt(RVY()ۮ()[W!_# o=y@o=z4E^=y5zUl&)?{zzYCk<'| Vǥݵ^2Y#RRf8>m`$wz2߼~:62H^>T*i?OUTT|Q;Kagʇ(8W: [ A]XM5LM3Nw"/a5 Equation@ XHP LaserJet 4/4MH Ma METAFILEPICT`N< u .1  @ & MathType DTimes New Roman-!X"System-Dd<  C A2 :xGv1.m@`!:xGv1.m@Rx51 @E%$ZE ;o`aZئX"*$"r o'"  +t/?<%PQ2P\%`Mv VYyU %Rs^R5w\s[k{K7<;yS> F}xh:E۪(mkQ}RDdXhB  S A? 2a>/35eObjInfoive6Ole10NativevedOle0Native F& FMicrosoft Equation 3.0 DS Equation Equation.39qeObjInfoive2FOle10NativeveDOle734427 FompObjNative 0컂+-e ObjInfo96'()*+,-./0.F@Ole10NativeHIJKLMNOPDOleObjive @ r 2 /S Cha  Ole10Native()*+,-./0(*DEquation Native @Ole0Native 98IdI  2 /Times New Roman~SDdEquation Native F@Oleion Native  CompObj08&)F fh|YJ HXD=A`!5>/h|YJ HXD@|xcdd`` @bD"L1JE `x0 Yjl R A@v n`f` UXRYvo`0L` ZZ]46Z` $~mՇX&1BM 6471@penR~.11pAÊ `@``b#RpeqIj.;t71HNDdB  S A? 2YWQ! ᵁo,F=5C`!-WQ! ᵁo,F=!`h(3x=OAg 㘏 E "A "i [QDV, c+ B(5KhHaQ"J"I+)ݻխd}g!"/x<'^$DA}_F^`NFu¼$iJ0 >'+%V'bn^)UׁT>ic,}>f(o3Ѽ17h9gLyN׌oѧ4π-ſ>GwZ_chooi7MJ&^zx3(Z *|x  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvw5zO{}~Ii[It#Qn[kQ,S PrG N => ͭrnODd|B  S A? 2 h:V'BLa^F`!V h:V'BLa>`e 0$xcdd``gd``beV dX,XĐ )CRcgb v6znĒʂT ~35;a#L ! ~ Ay 9W/;H& 7| p0泂4b[s m Maࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ m1Eࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ> @ l7) ct #ࡱ>  ࡱ>   FMicrosoft Equation 2.0 Equat2 Equation.29qࡱ>ࡱ> ` W Q =L Q /l.1ࡱ>ࡱ>   FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ> ` A=SL Q (1)&YesO# Eࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9ܹI I ࡱ9L~II Times New Roman~A=~S"~L Q (1) ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9II ࡱ@ l7) !&14ο`8?wZ0@penR~v60~a)F[.hsP;=}Ĥ\Y\`u^T%DdhB  S A? 2Ra,YeG%kH`!cRa,YeG%4@4 |1xcdd``bd``beV dX,XĐ Ɂ A?d- πjx|K2B* R. `W01d++&104\ F\ Śp~8 g5 3  3 +12 2  4 +6 5 4 2  9ࡱࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> qIxI S=4ࡱ FMicrosoft Equation 3.0 DS Equation Equation.39qoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ S=2 Eࡱ>    .1  ``  MathType@ Times New RomanM-!S@TSymbol-!=@Times New RomanM-!2"System-ࡱ>   FMicrosoft Equation Equation Equation9qࡱ> ` B=1L Q (S)INFOࡱ>  z  .1  ` & MathType@DTimes New Roman~ -!A@!B@lSymbol-!-T4I\I B=1"Times New Roman}L Arial|Q (S)"System-ࡱ>   FMicrosoft Equation Equation Equation9qࡱ> ࡱ> 9LlI8I Times New Roman~W `I? E90O@ 3t1$FK4&n e(aI9 L] RzΟ v-4Ĺ(v0o(121)W2Cw33XQt Dd|B   S A? 2sMd|⥗b@tOJ`!GMd|⥗b@t` 0xQAJP}3I .ܩ^V-J@$A<t)\{ƕ`~d C .iH5Y;_lB\Mvh&{L]ϹW :@"Ă_{: @-irial|Q (S)ࡱ` B=1L Q (S)ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9L~II Times New Roman~A=~ FMicrosoft Equation 3.0 DS Equation Equation.39q (1)&YesO#ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 98IdI  2 /Timew Roman~Sࡱ> @ r 2 /S Chaࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> ` W Q =L Q /l.1` W Q =L Q /l.1  FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ>  >H..  'Gf *ࡱ>   FMicrosoft Equation 2.0 DS Eq9LlI8I Times New Roman~W Q =~L Q />  8H>>  7Gf *ࡱ>   FMicrosoft Equation 2.0 DS Equation Equation.29qࡱ>ࡱ> ` r * =r/S7_ i Lŗƃ]4;VdTimes New RomanM-!S"System-;ࡱ FMicrosoft Equation Equation Equation9qࡱ> ࡱ> 9LI4I Times New Roman~B=1"~L Q (~S)ࡱ FMicrosoft Equation Equation Equation9qࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9LI$oI Times New Roman~A=~S"~L Q (1)ࡱz  .1  ` & MathType@DTimes New Roman~ -!A@!B@lSymbol-!-@!=@Times New Roman~ -!0"System->  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9 I$I ࡱ@ lINFOࡱ>  @ A-B=0 INFO FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9 JHI ࡱ@ m< ࡱ>  ࡱ>  edpdL&x `6W&@| D@2_Ŝ0q[qaVt0&FM`-w 0py{Ĥ\Y\Nf:/ Dd$hB " S A ? !2tŦ/8FPN`!HŦ/8F@E |xcdd`` @bD"L1JE `x Yjl R A@2 N`c`x UXRYvo`0L`A $37X/\!(?71]<6j`dg)ց%Al 5p0T 1`_ +ss`.w+Hi.Ŀo 1@sAC `@ ;F&&\w~bf@dnJ  Equation@ m E METAFILEPICT=|=, p .1  `  & MathType@Symbol-!m"System-Dd< # C A"2- ^W1ڛRLxHR`!- ^W1ڛRLx `Ƚ!xcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDd< $ C A!39qࡱ>ࡱ> @ l4 fࡱ>  = p .1    & MathType @Symbol-!l"System- FMicrosoft Equation Equation Equation9qCompObjfObjInfoOle10Natived  .1  `` & MathType@ Times New RomanM-!S@TSymbol-!=@Times New RomanM-!2"System-f@ S=2 E2 =ࡱ> ࡱ>  FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ lINFOࡱ> #257oB73"S`! 7oB73"``:!xcdd``> @bD"L1JE `x,56~ĒʂT؞L 1L`^ $37X/\!(?71d.PH+22]2)Q$9@+ss >? cbNb"#D#{8=padbR ,.Ie`Cw3XͲ,Dd B % S A"? $2SG^R2 Eʨh^L2`!*$KQ^Lxcdd`` @bD"L1JE `x0`41c@ UXRY`vo`0L`A $37X/\!(?71a-%@y mĕ]h&0@penR~D#'0b &1Mr` f  `@]';F&&\wc82 _ADd B * S A'? )2a"oD@^U`!SG^R2 Eʨh!x/CAgfҧ6ơH_!p'$M|=DԩKp8ppHD6:ڙ,B@<@xNK1 Qi PATaк~)nrR*$;+FJrWd>%IbyPZNڃW8:zYҩЍ*_ = X,G{e>Q0Wkyp>\ƎWūmm8Z,jM;R=]i؈TNn6rl%\2|G6N%wV$B[jLHClmxe0I\=wyt2}Qo6aŲăiwBmoQD & Me"QBtPo}Dd B & S A#? %2Vl3S`OX`!Vl3S`ŴPt]x;KAgf/9saac @s񑠤E?U,m,D$O V*;5cw! a=FlY <9Q :Ny j[IKk2:$HJnKVܕiAL6bs̵;&ԊӨ^G%>E;nO4W2FGig*ҤV־žϔZh_Ҭ}PD,VR-mopW#Y~sglo8ubu%]4x v&98xk;4v~VXBDHa! :&뼙aV2ϛM7ZiQ aj91-Uz y#3w$!I(ѶjkOUH3W׻~^ `̠oN L4*38ZDJc>~H>~|7rv*6[ _Vǻz lr@VHEi#>[eJj)_^񇒸fs 9=C\>˝ɝůYߙ!^|}Teǃ |2Su2& eOsG߹TmQN47ۀqEjof~$UC' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Zj!xK#O2.9|;Gs+YCr_9LI$oI Times New Roman~A=~S"~L Q (1)ࡱࡱ>  FMicrosoft Equation 3.0 DS Eq FMicrosoft Equation 3.0 DS Equation Equation.39q9Ole10Native02F:dEquation Native <h_10947344275F 5T5T)f l7) ct #0ExSt>CompObjive47?fObjInfoNativeAOle10Native68FBdqIxI S=4>ࡱ> ` B=1L Q (S)ࡱ>9LI4I Times New Roman~B=1"~L Q (~S)ࡱࡱ>  FMicrosoft Equation Equation8/Ynz1B(DdB , S A ? +28Q5 V04z?Z`!8Q5 V04z?@x5O; P Vbi΀ BB `tXXy`/ffg >]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ڿDd(2V$KQ^L2_`!*$KQ^Lxcdd`` @bD"L1JE `x0`41c@ UXRY`vo`0L`A $37X/\!(?71a-%@y mĕ]h&0@penR~D#'0b &1Mr` f  `@]';F&&\wc82 _ADd B * S A'? )2a"FMicrosoft Equation 3.0 DS Equation Equation.39qIhOle10NativeFSd_1109870052@F5T5TOleObj U FMicrosoft Equation 3.0 DS Equation Equation.39qs in Table 2. show that expected number of customers in the queue is 1.47845 and 3.27142 for multipurpose and specialized counters, respectively. This example supports the proof as per Chapter 2. of the paper, i.e., if the service rates are equal, the queue is greater in specialized than in universal service places. The same conclusion refers to the time customers spend in the queue as well as to busy/idle  m( hat specialization requires increased number of counters, specifically, four counter in this example. However, it is fair to assume that a specialized counter should have higher service rate, and according to relation (17) in Chapter 3. of the paper it comes out that for S = 3/4, (where the first number stands for number of counter in multipurpose system and the second for number of specialized counters), ( = 17.57451/4 = 4.39363, ( = 8, s%LpI4I k s1 =2 3 + 4 6 "16 5 "8 4  2 +6 3  3 +12 2  4 +6 5 4 2  9service rate should be increased by 21.9%. Considering the service type offered at particular counter and proportion of human work required in providingoD@^a`!Va"oD@$8$x=hA߼>ubu%]4x v&98xk;4v~VXBDHa! :&뼙aV2ϛM7ZiQ aj91-Uz y#3w$!I(ѶjkOUH3W׻~^ `̠oN L4*38ZDJc>~H>~|7rv*6[ _Vǻz lr@VHEi#>[eJj)_^񇒸fs 9=C\>˝ɝůYߙ!^|}Teǃ |2Su2& eOsG߹TmQN47ۀqEjof~$UC' $/9. 8w\֮(!UU2! _pAkRI*!nR~ gm~1?|Z]0FוYD; IilȜeE|%Ob"2?K&Tr"~Sr`m_7X83A/Pv(nm$S7^16=4cMӬ:y"-x?$ڿDdQ =L Q /l.1eta morskih luka, Ekonomski fakultet, dokt. disertacija, Sveu iliate u Rijeci, Rijeka, 1995. Z. Zenzerovi, Kapaciteti uslu~nih mjesta u funkciji efikasnosti sustava masovnog opslu~ivanja, Zbornik radova Ek-2N̈{u`!mN̈{Ì0];xMHQͮcJfe!hM JPK)Vx̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[^k!O~Sf،ʥMRdF5t޷DDh1ɗIZ~/@%MtJk,,A@cݪ.Q#uriJdxOC8QU<84bɖ Q}Dd< / C A*.2"CUWz`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufOC5 Equation@ FMicrosoft Equation 3.0 DS Equation Equation.39q@ S E l7) ct # METAFILEPICT=Y=+ p .1    & MathType @Symbol-!l"System-Dd< 1 C A02'ח }`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufٖ Equation@ l7) ct # METAFILEPICT=Y=! p .1    & MathType @Symbol-!l"System-Dd< 3 C A22'ח }`!'ח } ȽRxcdd``.````b`V dX@`FE%"LPL0}27)?b.PH+22At 0py{v221)W2At1ufDdDhB 5 S A,? 42`>44!$pM !!!p   $$ $ $T  BnW$B - S A(? ,2) #o0U yl!h`! #o0U yl!`!Hx5O @]#` v@A?{so|phϮJV50*)tR -X'B$]T,Ts/vak&xAp!cDUjxbt.%sEa;C'Ren.퓘۳C3)?/߽DRPI,/DdB . S A)}hno\]cdUV! >    ($$ !  $ / !$pM $!$ FMicrosoft Equation 2.0 Equation.2 Equation.29qABCHIXYZ[\]^dDzঝznjR@A CJUVmHjm EHUmH CJmH jTEHUmH j[R@A CJUVmHj<EHUmH j̎g1(.=.k$8[{/Q{+U@wLy{!ɕ㘨w ~kW; ;~dCvjPRrTopwM,%+b72c֒lg2io?ʪ;[Ywx r7K9eY޹g@1O`d.5r~\%w:匿%v-WEeOۤ#2\2I'{YpNMvע[j&oLQdv^|#NERTGIuMѠ3?7f[[^k!O~Sf،ʥMRdF5t޷DDh1ɗIZ~/@%MtJk,,A@cݪ.Q#uriJdxOC8QU<84bɖ Q}Dd< / C A*.2"CUWz m`!"CUWz ȽRxcdd``.````b`V dX@`FE%"LPL0}*F*N*V*^*f*h*p*r*~**************+++(+4+@+L+N+V+X+Z+\+h+t+++++++++++++++++,%  #!"^ FMicrosoft Equation 2.0 Equation.2 Equation.29q$i$j$k$l$o$p$}$~$$$$$$$$$$$xoj(dEHUmH j X@A CJUVmH jaEHUjK'B CJUV j$_EHUjK'B CJUV jCJU jQ\EHU jeZEHUCJjWEHUmH CJmHjUEHUmH j>SEHUmH jAA CJUVmH jUmH mH CJmH  CJH*mH +<>7 ؤbI(.k$F@> =p|Ĥ\Y\u`uDR$6$#$#$  #$t#$  #$#$t#  &B     #$$ !0 &@t$$ & F $$ &P . A!"#$%Z)[)***&*.*6*>*F*N*V*$$ %$$ 9r $$ u$H$wY$$$  $ $@    B& [$@$NormalmH 4@4 Heading 1$@&CJmHD D Heading 2$$@& CJmHnH 8`8 Heading 4 $$@&mH nH <A@<Default Paragraph Font606 List Bullet  & FmH :6: List Bullet 2  & FmH :7: List Bullet 3  & FmH :8": List Bullet 4  & FmH :92: List Bullet 5  & FmH 61B6 List Number  & FmH ::R: List Number 2  & FmH :;b: List Number 3  & FmH :<r: List Number 4  & F mH :=: List Number 5  & F mH .B@. Body TextCJmH(U@( Hyperlink>*B*6@6 Normal IndentmH JOJ HTML TypewriterCJOJPJQJ^JaJo(HR@HBody Text Indent 2 $CJmH6P@6 Body Text 2$CJmHLS@LBody Text Indent 3 $ 5CJmH6D@6 List Continue xDC@DBody Text Indent !$CJmH$/@"$List "(2@2(List 2 #6xOBx HTML Preformatted7$ 2( Px 4 #\'*.25@9 OJPJQJ0 @R0Footer % 9r nH DNDN\]o#9^pqS Y   3?~iop]^de VW^_flm0129:NOPefELS+,56PjkGH !!!!""?#@#I#K#O#S#W#[#_#c#g#k#o#s#t#x#y#############################$$ $$$$$$$ $!$'$-$3$9$?$E$F$J$K$L$M$N$O$U$[$a$g$m$n$r$s$t$u$v$w$x$~$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$'((((((()))*>*?***+5+Q+R+++,>,w,x,,----C///M00(1)11111>222H3I3J3N3X3]3y333333333333333333333444 4 4 444&4(40484@4H4I4L4W4j4r4t4v4x4z4{4~444444444445 555!5"5%5S5\5d5l5t5|5}5555555555566686=6E6Q6Y6e6m6y66666666666666+9:<<1>>Q??\@]@@@@@@@ AAA'A=AFAGAJALAWA_AgAhAkAmAxAzA|A}AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABB BBB%B0B1B4B6B:BBBNBVBaBbBfBiBkBqBwBxByB~CDDD5E6E@EKEVEaEjEkEmEoEqEsEtEwE|EEEEEEEEEEF_FFFFFFHHHH5J6JJJJJJJ7KkK|LMMN?NEN  !!!!!!!! """"!!!#########%#("*"*"******************** * *))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ) ) ))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ) )))$)$)$)$)$)$)$)$)$)$)$)$)$)$) $) $) $) $) $) $)$$$Ew#$(-:IjN"$/27<Dj{X!#'24D<XBN^^y< !"%4'24:BPIm~;?ABDEHJLY`oxJMNPQSUWXdktzSWP$&V**+h++ ,3,U,o,,,0B5;";d;;;<?==]>'HHIWIIILMR>^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz(̋>^#l12<===R>>>?X???ZEZQ0]L]] ^^`abcVwxyyhzz(̋>!^%l34>???R@@@AXAAAZGP^f__:`a4bcdepyz*{{||΂B<>@CFIKMNOPQSTUVWXZ\^_abdfgijlmpqstvwzKLORTVYZ[\]^_`abcefghijlmnopqrsuvwxy{`#,2:;x<=FHuIL_PY=GR[]cehknruyUnknownPomorski fakultet u Rijeci$&fvx}5EGM]_1ACIY[oSce>LNR`b!!!#"#$#*#;#=#9%I%K%Q%a%c%&&&&*&,&&&&-'='?'DNX:::::::::::::::::::::::::::::::::::::/X2$_kW<󒇗pKe2$^4.lƋjwL&@0(  B S  ?DN _Hlt507075964~ENENPomorski fakultet u RijeciC:\Radovi\KOI2002.engl.docPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.englPomorski fakultet u Rijeci+C:\Radovi\AutoRecovery save of KOI2002.engl2|2}d5~N\ \TNTYl̩d<A `Xhtfl=M #fX t  bwp i }O\ ipm9'B!Brd" b4%!j%jm&dXE& J,-. U8$Y< [m=hL'I'? "C SEGnE z=KwfLN<:jNN lPvbz'~X/>8=X1|(Y [ B]1;l]SgMy^ @aW_jbE.+hp) nds/:v\+w >LQxv@x .... OJQJo( OJQJo( OJQJo( OJQJo(hh. hhOJQJo( hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh.hh^h`o()hh[]hh.hh.hh^h`5o(.hh^h`5o(..0^`05o(...0^`05o(.... 88^8`5o( ..... 88^8`5o( ...... `^``5o(....... `^``5o(........ ^`5o(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.88o(..p0po(...@ 0@ o(.... xxo( ..... HHo( ...... `o(....... P`Po(........ o(.........hh.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`562.1.hh.88^8`o(.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho()hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........^`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh.hh^h`o(.hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ Oh+'0 ,@ dp   XIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY OF QUEUING SYSTEM FUNCTIONING MPAPomorski fakultet u RijeciComo Normal.dotkPomorski fakultet u RijeciC25oMicrosoft Word 8.0 @@FL|@rYQ @@ l7) ct #T hp  4Pomorski fakulte Rijeka!27)?b.PH+22At 0py{v221)W2At1ufOC5 XXo(.........hh^h`o(. hh^h`OJQJo(hh^h`o(. Po(.YPYo(.."0"o(...0o(....   o( .....   o( ...... `o(....... ?`?o(........ PPo(.........hho() hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(......... hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hho(.o(..$0$o(...0o(....   o( .....   o( ...... `o(....... F`Fo(........ XXo(.........hh^h`5o(.--^-`o(.hho()2~}|-."C%jm&}Ot lP|(Yz=K+wvJ,[ B]=Xird"E&#fX=MI'?jNNbw9'B!@a ixv@xY<+hpMy^;l]fb4%[m=U8z'~X_jbfLNSEGnds2@n7n78~uEEn7n7 PR_3R   2nocd V/de%DEFKL, !2!Q!!!"""@#@$$$$G'H'X'''''I(R((()))**++-----}2222(3G3H3I3J3M3N3W3X3\3]3q3r3x3y333333333333333334 44"4#4I4L4S4V4W4Z4e4i4j4q4r4{4~4444444445"5%5N5S5[5}55555664686<6e6666666X@Y@@@@@@@@@@A A AA"A'A/A4A@>@@@A@AAAAFAFAFA:G@XGAZGAGAH@H@I@I@tK@vK@xK@N@N@O@OA6SAJS@^S@S@SA]@]@]A]Ar^@^@^@^A^@^A^@^A^@^A^A_A_@_A_@H_@L_@h_An_A_@_A_A_A_@_@_A_A `@`A`A`@(`@<`@B`Af`@h`@`A`A`@`A`A`A`@`A`@a@a@aAaABa@DaA\a@`a@aAa@bAb@"b@fbAlb@bAb@b@cA"c@|cAc@c@*dA0d@dAd@d@d@z@fzApzAzAz@z@z@zAzAzAz@z@z@zAzA{@{@"{AV{@d{@v{A{@{A{@{@|A*|@2|@}@@A@@A@A@A@ƂAւ@܂@@^@`@@@@h@@@@l@l@l@@@@@GTimes New Roman5Symbol3& Arial?5 Courier NewI& : ?Arial Unicode MS"1h$rF^sQ @!!4Data |TWordDocument"ObjectPooljU-U10DocumentSummaryInformation8 CompObjive()*+,-./0Fj@0Tablen NativeIJKLMNOPl_1094735790F`U U7fOlePres000veof KOI2002.engl( Ole10Nativeve)*+,-./0FD1TableoSummaryInformation("j56<GLMRWXYZ[\]cikmnopqrstuvwxyz{|}~ OF QUEUING SYSTEM FUNCTIONING MPAPomorski fakultet u RijeciComo Normal.dotkPomorski fakultet u RijeciC25oMicrosoft Word 8.0 @@FL|@rYQ @՜.+,D՜.+,T hp  4Pomorski fakulte Rijeka! ࡱ> Oh+'0 ,@ dp   XIMPACT OF SERVICE PLACE SPECIALIZATION ON THE EFFICIENCY_1094734250 FAފYAފYDd_1094734303FhYhY_1094734308FhYhY _1094734396FhYhY f_1094202371e$.//,0 F֊Y֊YDEq_1094734238e FAފYAފY1T_1094734241FAފYAފY]S_1094734247ation(FAފYAފY(*Ole10NativeveFdEquation Native FXOleObj CompObjNative]_1109871576ve0컂GFsYsYM _1094735882veOle10NativeBFsYsYD_1094735884iveD_1094825451=FsYY ,_1093942740rmationOle0Native8FYY@ Equation Native 0컂 X Olenfoive()*+,-./0 F@CompObjiveveIJKLMNOPfObjInfoNativeFOlenfoNativeof KOI2002.engl  CompObjive()*+,-./0FfObjInfo51FOle10NativedCompObjiveveof KOI2002.englf ObjInfo89'()*+,-./0FOle10NativeDEquation Native F,ObjInfo90FdOle10NativeFDEquation Native ,Olenfo _1094735790iveWF1Y1YX_1094735820S FYY_1094830536   O FYY_1109871577KFYsYf@ Ole10Nativeveof KOI2002.englD Equation Native)*+,-./0 F,Olenfo CompObjivef_1094734427 {FhYhY _1094734560w F Y Yd_1109870052ivesF Y YX_1109870051oF Y YEquation Native ,dOle0Native FCompObjNativefObjInfo74FOleion Native 0컂  CompObj40()*+,-./0Ff@ObjInfoNativeIJKLMNOPOle10NativeFDCompObjNative 0컂f ObjInfo96'()*+,-./0F@Ole10NativeHIJKLMNOPdEquation Native hObjInfoNativeOle10Native|~FdEquation Native   hOle735884 F@ _1109870049ave of KOI2002.englkF Y Y _1094735633'()*+,-./0 fF1Y1Yf_1094735746aF1Y1Y_1094834259\F1Y1YdOlePres000iveyhOle10NativeFdOlenfo CompObjNativez}fObjInfo76iveuFEquation Native F<OleObj   CompObjvx]@ _1109871574 0컂4FYY! _1093018490'()*+,-./00FYY"f@_1093018489GHIJKLMNOP,FY<Y$_1094825451 'F<Y<Y%DObjInfoqEquation Native <Olenfo CompObjNativertfObjInfoNativeof KOI2002.englm Ole10Native()*+,-./0FdOle0Native CompObj77npFfOle10Nativeve 0컂giyD Equation Native)*+,-./0 FwT@Ole830536GHIJKLMNOP  FCompObjivejle "%),036789:=BEGHIJKLMORTUVWXYZ[]`behjmpruxz}Equation Native 0컂 oh Ole735820'()*+,-./0  F~@CompObjFGHIJKLMNOPeh|fObjInfoive{Ole0Native vdCompObj38`cFtfObjInfosOle10NativebdqdCompObjNative 0컂[^lf ObjInfoive()*+,-./0Fk@Ole10NativeveIJKLMNOP]_idEquation Native FgpObjInfoNativeof KOI2002.englc Ole10Native()*+,-./0XZFadEquation Native _hOleObjive nOlePres000iveUSOle10NativeFQDOlenfo   fCompObjiveVYdf@ OlePres000ive 0컂QF Ole10Native()*+,-./0FDD@Oleion NativeIJKLMNOP ^CompObj46RTF\]ObjInfoiveveM@Equation Native F?4Ole   PCompObjNPN]@ _1094825458ive<"F<Y<Y',Ole734303 FCompObj!$fObjInfoObjInfo49IF;dEquation Native F5hOleObj CCompObjJLAfOle10Nativeve0컂CE.//,/DM Equation NativeOle10Native F.,OlenfoNativeD_1094825451 >CompObjNativeionOle0NativeFHF<f@ Equation Native ',dOlenfo38 F4CompObjNativeAD2fObjInfo51F1Oleres000ive -CompObjive<?F+fObjInfo52  F*Ole10Native>@(D@ CompObjNativeof KOI2002.engl7:$f ObjInfo60'()*+,-./0 F#Ole10Native9;!DEquation Native  ,CompObj35eObjInfoive6Ole10NativevedOle0Native F&CompObjNative</1eObjInfoive2FOle10NativeveDOle734427 FCompObjNative 0컂+-e ObjInfo96'()*+,-./0.F@Ole10NativeHIJKLMNOPDOleObjive ObjInfopsave of KOI2002.engl  Ole10Native()*+,-./0(*DEquation Native @Ole0Native Ole10Native#%DdEquation Native F@Oleion Native  CompObj08&)F f   !#($%+.,243756;B<=>?@ECDMJKQNOV\]aebgslmnopqrxtu{|}     !"#$%&'()*+,-./032 y789:;<=>?@ABCDEFGHIJKLMNP6QRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~v      !%'"#$&+)(1*.,-2/08>34567<9:;=A@?GCBMDEFOHIJKLNSTPQRVXU\WZY^[`]_ckabjdefghionlmtpqrsu{wxyz~}5$II k s "@ k s m Maࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 5$I0I k s "@ k s m Maࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ m1Eࡱ>  ࡱ>   FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ> @ l7) ct #ࡱ>  ࡱ>   FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ> ` W Q =L Q /l.1ࡱ>ࡱ>   FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ> IдI Sࡱ@ S Eࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9ܹI I ࡱ@ m( ࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9II ࡱ@ l7) ct #ࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> %LpI4I k s1 =2 3 + 4 6 "16 5 "8 4  2 +6 3  3 +12 2  4 +6 5 4 2  9ࡱࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> qIxI S=4ࡱࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ S=2 Eࡱ>    .1  `` & MathType@ Times New RomanM-!S@TSymbol-!=@Times New RomanM-!2"System-ࡱ>   FMicrosoft Equation Equation Equation9qࡱ> ࡱ> @ A-B=0 INFOࡱ>  z  .1  ` & MathType@DTimes New Roman~ -!A@!B@lSymbol-!-@!=@Times New Roman~ -!0"System-ࡱ>   FMicrosoft Equation Equation Equation9qࡱ> ࡱ> 9LlI8I Times New Roman~W Q =~L Q /ࡱ` W Q =L Q /l.1ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> T4I\I B=1"Times New Roman}L Arial|Q (S)ࡱ` B=1L Q (S)ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9L~II Times New Roman~A=~S"~L Q (1)ࡱ` A=SL Q (1)&YesO#ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 98IdI  2 /Time     s New Roman~Sࡱ> @ r 2 /S Chaࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> ` W Q =L Q /l.1ࡱ>ࡱ>   FMicrosoft Equation 2.0 Equation.2 Equation.29qࡱ>ࡱ>  >H..  'Gf *ࡱ>   FMicrosoft Equation 2.0 DS Equation Equation.29qࡱ>ࡱ>  8H>>  7Gf *ࡱ>   FMicrosoft Equation 2.0 DS Equation Equation.29qࡱ>ࡱ> ` r * =r/Sࡱ>V4@  .1   & MathType@ Symbol-!r!r Symbol-!*Symbol-!=Times New Roman-!/Times New RomanM-!S"System-;ࡱ FMicrosoft Equation Equation Equation9qࡱ> ࡱ> 9LI4I Times New Roman~B=1"~L Q (~S)ࡱ` B=1L Q (S)ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9LI$oI Times New Roman~A=~S"~L Q (1)ࡱ` A=SL Q (1)ࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9II es ࡱ@ m< ࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9 I$I ࡱ@ lINFOࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9 JHI ࡱ@ m< ࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9II ࡱ@ lINFOࡱ>  ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9<ILI  1 = 2 =ࡱ> ` l 1 =l 2 =lࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> 9<II  1 = 2 =ࡱ> ` m 1 =m 2 =mࡱ>ࡱ>   FMicrosoft Equation 3.0 DS Equation Equation.39qࡱ>ࡱ> @ l4 fࡱ>  = p .1    & MathType @Symbol-!l"System-