Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1159251

Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm


Saba, Luca; Biswas, Mainak; Suri, Harman S.; Višković, Klaudija; Laird, John R.; Cuadrado- Godia, Elisa; Nicolaides, Andrew; Khanna, N. N.; Viswanathan, Vijay; Suri, Jasjit S.
Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm // Cardiovascular Diagnosis and Therapy, 9 (2019), 5; 439-461 doi:10.21037/cdt.2019.09.01 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1159251 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm

Autori
Saba, Luca ; Biswas, Mainak ; Suri, Harman S. ; Višković, Klaudija ; Laird, John R. ; Cuadrado- Godia, Elisa ; Nicolaides, Andrew ; Khanna, N. N. ; Viswanathan, Vijay ; Suri, Jasjit S.

Izvornik
Cardiovascular Diagnosis and Therapy (2223-3652) 9 (2019), 5; 439-461

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Atherosclerosis ; carotid stenosis severity index (carotid SSI) ; reliable ; accurate ; deep learning (DL) ; performance

Sažetak
Background: Stroke is in the top three leading causes of death worldwide. Non-invasive monitoring of stroke can be accomplished via stenosis measurements. The current conventional image-based methods for these measurements are not accurate and reliable. They do not incorporate shape and intelligent learning component in their design. Methods: In this study, we propose a deep learning (DL)-based methodology for accurate measurement of stenosis in common carotid artery (CCA) ultrasound (US) scans using a class of AtheroEdge system from AtheroPoint, USA. Three radiologists manually traced the lumen-intima (LI) for the near and the far walls, respectively, which served as a gold standard (GS) for training the DL-based model. Three DL-based systems were developed based on three types of GS. Results: IRB approved (Toho University, Japan) 407 US scans from 204 patients were collected. The risk was characterized into three classes: low, moderate, and high-risk. The area-under-curve (AUC) corresponding to three DL systems using receiver operating characteristic (ROC) analysis computed were: 0.90, 0.94 and 0.86, respectively. Conclusions: Novel DL-based strategy showed reliable, accurate and stable stenosis severity index (SSI) measurements.

Izvorni jezik
Engleski

Znanstvena područja
Kliničke medicinske znanosti



POVEZANOST RADA


Ustanove:
Klinika za infektivne bolesti "Dr Fran Mihaljević",
Zdravstveno veleučilište, Zagreb,
Fakultet zdravstvenih studija u Rijeci

Profili:

Avatar Url Klaudija Višković (autor)

Poveznice na cjeloviti tekst rada:

doi cdt.amegroups.com

Citiraj ovu publikaciju:

Saba, Luca; Biswas, Mainak; Suri, Harman S.; Višković, Klaudija; Laird, John R.; Cuadrado- Godia, Elisa; Nicolaides, Andrew; Khanna, N. N.; Viswanathan, Vijay; Suri, Jasjit S.
Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm // Cardiovascular Diagnosis and Therapy, 9 (2019), 5; 439-461 doi:10.21037/cdt.2019.09.01 (međunarodna recenzija, članak, znanstveni)
Saba, L., Biswas, M., Suri, H., Višković, K., Laird, J., Cuadrado- Godia, E., Nicolaides, A., Khanna, N., Viswanathan, V. & Suri, J. (2019) Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm. Cardiovascular Diagnosis and Therapy, 9 (5), 439-461 doi:10.21037/cdt.2019.09.01.
@article{article, author = {Saba, Luca and Biswas, Mainak and Suri, Harman S. and Vi\v{s}kovi\'{c}, Klaudija and Laird, John R. and Cuadrado- Godia, Elisa and Nicolaides, Andrew and Khanna, N. N. and Viswanathan, Vijay and Suri, Jasjit S.}, year = {2019}, pages = {439-461}, DOI = {10.21037/cdt.2019.09.01}, keywords = {Atherosclerosis, carotid stenosis severity index (carotid SSI), reliable, accurate, deep learning (DL), performance}, journal = {Cardiovascular Diagnosis and Therapy}, doi = {10.21037/cdt.2019.09.01}, volume = {9}, number = {5}, issn = {2223-3652}, title = {Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm}, keyword = {Atherosclerosis, carotid stenosis severity index (carotid SSI), reliable, accurate, deep learning (DL), performance} }
@article{article, author = {Saba, Luca and Biswas, Mainak and Suri, Harman S. and Vi\v{s}kovi\'{c}, Klaudija and Laird, John R. and Cuadrado- Godia, Elisa and Nicolaides, Andrew and Khanna, N. N. and Viswanathan, Vijay and Suri, Jasjit S.}, year = {2019}, pages = {439-461}, DOI = {10.21037/cdt.2019.09.01}, keywords = {Atherosclerosis, carotid stenosis severity index (carotid SSI), reliable, accurate, deep learning (DL), performance}, journal = {Cardiovascular Diagnosis and Therapy}, doi = {10.21037/cdt.2019.09.01}, volume = {9}, number = {5}, issn = {2223-3652}, title = {Ultrasound-based carotid stenosis measurement and risk stratification in diabetic cohort: a deep learning paradigm}, keyword = {Atherosclerosis, carotid stenosis severity index (carotid SSI), reliable, accurate, deep learning (DL), performance} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font