Pregled bibliografske jedinice broj: 115826
A Universal separable metric space based on the triangular Sierpinski curve
A Universal separable metric space based on the triangular Sierpinski curve // Topology and its Applications, 120 (2002), 237-271 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 115826 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A Universal separable metric space based on the triangular Sierpinski curve
Autori
Ivanšić, Ivan ; Milutinović, Uroš
Izvornik
Topology and its Applications (0166-8641) 120
(2002);
237-271
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
covering dimension; Sierpinski curve; universal space; Lipscomb's universal space; embedding; decompositions of toplogical spaces
Sažetak
Let \Sigma(3) be the triangular Sierpinski curve. Call the vertices of the triangles obtained during the construction of \Sigma(3) (with the exception of the first triangle) the rational points of \Sigma (3), and all other points the irrational points of \Sigma(3). Using results of Lipscomb and techniques and results of Milutinovi?, we prove that L_n(3)={x\in\Sigma(3)^(n+1): at least one coordinate of x is irrational} is a universal space for all metrizable spaces of dimension \leq n.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
0037105
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus
Uključenost u ostale bibliografske baze podataka::
- Mathematical Reviews
- Zentralblatt für Mathematik
- Referativnij žurnal