Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1156694

Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation


Gače, Ivana; Pevec, Dario; Vdović, Hrvoje; Babić, Jurica; Podobnik, Vedran
Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation // Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech 2021)
Split, Hrvatska, 2021. str. 1-6 doi:10.23919/SpliTech52315.2021.9566371 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1156694 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation

Autori
Gače, Ivana ; Pevec, Dario ; Vdović, Hrvoje ; Babić, Jurica ; Podobnik, Vedran

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech 2021) / - , 2021, 1-6

Skup
6th International Conference on Smart and Sustainable Technologies (SpliTech 2021)

Mjesto i datum
Split, Hrvatska, 08.09.2021. - 11.09.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
automotive data ; driving style ; transportation sector ; MaaS ; unsupervised learning ; clustering

Sažetak
The process of urbanisation affects various aspects of human society, of which transportation is no exception. Different forms of mobility are offered to address the transportation challenges, such as congestion, parking spaces and pollution. Mobility as a Service (MaaS), a novel transportation paradigm, aims to improve the usability of the transportation network by combining different forms of travel. Currently, the most widespread option of travel are cars. Therefore, a possible approach to improve the sustainability aspect of MaaS solutions is to get a better understanding of car driver behaviour, such as driving style categorisation. This paper aims to present an advanced analytical study of contextually enriched automotive data set gathered from cars. Specifically, an unsupervised learning algorithm (i.e., k-means clustering) was used to identify patterns in the trips of different car drivers. The clustering process identified three driving styles among analysed car drivers. Identified driving styles were further analysed from the automotive, traffic, road and time perspectives, to better understand the sustainability aspect of transportation.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Ivana Gače (autor)

Avatar Url Vedran Podobnik (autor)

Avatar Url Hrvoje Vdović (autor)

Avatar Url Jurica Babić (autor)

Avatar Url Dario Pevec (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Gače, Ivana; Pevec, Dario; Vdović, Hrvoje; Babić, Jurica; Podobnik, Vedran
Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation // Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech 2021)
Split, Hrvatska, 2021. str. 1-6 doi:10.23919/SpliTech52315.2021.9566371 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gače, I., Pevec, D., Vdović, H., Babić, J. & Podobnik, V. (2021) Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation. U: Proceedings of the 6th International Conference on Smart and Sustainable Technologies (SpliTech 2021) doi:10.23919/SpliTech52315.2021.9566371.
@article{article, author = {Ga\v{c}e, Ivana and Pevec, Dario and Vdovi\'{c}, Hrvoje and Babi\'{c}, Jurica and Podobnik, Vedran}, year = {2021}, pages = {1-6}, DOI = {10.23919/SpliTech52315.2021.9566371}, keywords = {automotive data, driving style, transportation sector, MaaS, unsupervised learning, clustering}, doi = {10.23919/SpliTech52315.2021.9566371}, title = {Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation}, keyword = {automotive data, driving style, transportation sector, MaaS, unsupervised learning, clustering}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Ga\v{c}e, Ivana and Pevec, Dario and Vdovi\'{c}, Hrvoje and Babi\'{c}, Jurica and Podobnik, Vedran}, year = {2021}, pages = {1-6}, DOI = {10.23919/SpliTech52315.2021.9566371}, keywords = {automotive data, driving style, transportation sector, MaaS, unsupervised learning, clustering}, doi = {10.23919/SpliTech52315.2021.9566371}, title = {Driving style Categorisation based on Unsupervised Learning: a Step towards Sustainable Transportation}, keyword = {automotive data, driving style, transportation sector, MaaS, unsupervised learning, clustering}, publisherplace = {Split, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font