Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1156582

ContexedNet: Context–Aware Ear Detection in Unconstrained Settings


Emeršić, Žiga; Sušanj, Diego; Meden, Blaž; Peer, Peter; Štruc, Vitomir
ContexedNet: Context–Aware Ear Detection in Unconstrained Settings // IEEE access, 9 (2021), 145175-145190 doi:10.1109/access.2021.3121792 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1156582 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
ContexedNet: Context–Aware Ear Detection in Unconstrained Settings

Autori
Emeršić, Žiga ; Sušanj, Diego ; Meden, Blaž ; Peer, Peter ; Štruc, Vitomir

Izvornik
IEEE access (2169-3536) 9 (2021); 145175-145190

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Ear detection ; ear biometrics ; biometrics ; deep learning

Sažetak
Ear detection represents one of the key components of contemporary ear recognition systems. While significant progress has been made in the area of ear detection over recent years, most of the improvements are direct results of advances in the field of visual object detection. Only a limited number of techniques presented in the literature are domain–specific and designed explicitly with ear detection in mind. In this paper, we aim to address this gap and present a novel detection approach that does not rely only on general ear (object) appearance, but also exploits contextual information, i.e., face–part locations, to ensure accurate and robust ear detection with images captured in a wide variety of imaging conditions. The proposed approach is based on a Contex t–aware E ar D etection Net work (ContexedNet) and poses ear detection as a semantic image segmentation problem. ContexedNet consists of two processing paths: i) a context–provider that extracts probability maps corresponding to the locations of facial parts from the input image, and ii) a dedicated ear segmentation model that integrates the computed probability maps into a context–aware segmentation-based ear detection procedure. ContexedNet is evaluated in rigorous experiments on the AWE and UBEAR datasets and shown to ensure competitive performance when evaluated against state–of–the–art ear detection models from the literature. Additionally, because the proposed contextualization is model agnostic, it can also be utilized with other ear detection techniques to improve performance.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Diego Sušanj (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Emeršić, Žiga; Sušanj, Diego; Meden, Blaž; Peer, Peter; Štruc, Vitomir
ContexedNet: Context–Aware Ear Detection in Unconstrained Settings // IEEE access, 9 (2021), 145175-145190 doi:10.1109/access.2021.3121792 (međunarodna recenzija, članak, znanstveni)
Emeršić, Ž., Sušanj, D., Meden, B., Peer, P. & Štruc, V. (2021) ContexedNet: Context–Aware Ear Detection in Unconstrained Settings. IEEE access, 9, 145175-145190 doi:10.1109/access.2021.3121792.
@article{article, author = {Emer\v{s}i\'{c}, \v{Z}iga and Su\v{s}anj, Diego and Meden, Bla\v{z} and Peer, Peter and \v{S}truc, Vitomir}, year = {2021}, pages = {145175-145190}, DOI = {10.1109/access.2021.3121792}, keywords = {Ear detection, ear biometrics, biometrics, deep learning}, journal = {IEEE access}, doi = {10.1109/access.2021.3121792}, volume = {9}, issn = {2169-3536}, title = {ContexedNet: Context–Aware Ear Detection in Unconstrained Settings}, keyword = {Ear detection, ear biometrics, biometrics, deep learning} }
@article{article, author = {Emer\v{s}i\'{c}, \v{Z}iga and Su\v{s}anj, Diego and Meden, Bla\v{z} and Peer, Peter and \v{S}truc, Vitomir}, year = {2021}, pages = {145175-145190}, DOI = {10.1109/access.2021.3121792}, keywords = {Ear detection, ear biometrics, biometrics, deep learning}, journal = {IEEE access}, doi = {10.1109/access.2021.3121792}, volume = {9}, issn = {2169-3536}, title = {ContexedNet: Context–Aware Ear Detection in Unconstrained Settings}, keyword = {Ear detection, ear biometrics, biometrics, deep learning} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font