Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1156486

Classification of Cognitive Load based on Oculometric Features


Gambiraža, Mate; Kesedžić, Ivan; Šarlija, Marko; Popović, Siniša; Ćosić, Krešimir
Classification of Cognitive Load based on Oculometric Features // 44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Opatija, Hrvatska, 2021. str. 406-4011 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1156486 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Classification of Cognitive Load based on Oculometric Features

Autori
Gambiraža, Mate ; Kesedžić, Ivan ; Šarlija, Marko ; Popović, Siniša ; Ćosić, Krešimir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)

Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Cognitive Load ; Classification ; Eye Tracking ; Pupillometry ; SVM

Sažetak
Cognitive load is related to the amount of working memory resources used in the execution of various mental tasks. Different multimodal features extracted from peripheral physiology, brain activity, and oculometric reactions have been used as non-intrusive, reliable, and objective measures of cognitive load. In this paper, we use data from 38 participants performing a four-level difficulty n-back task (0-, 1-, 2-, and 3-back task), with their oculometric reactions simultaneously recorded. Based on the neuroanatomic structure and function of the visual system, 26 oculometric features are extracted and organized into 3 groups related to: pupil dilation (PD), blinking, and fixation. The discriminative power of each group of features was evaluated in four-level cognitive load classification using a support vector machine (SVM) model and feature selection, and the achieved classification accuracies were: 33.33% using only pupil dilation features, 30.90% using only blink-related features, 30.21% using only fixations-related features. Finally, a 36.11% classification accuracy was achieved using a combination of all extracted oculometric features. The presented results show that various groups of oculometric features provide complementary information about the subject's cognitive load. The comparison of the extracted groups of features is given, and the most important features in terms of classification performance are discussed.

Izvorni jezik
Hrvatski

Znanstvena područja
Računarstvo, Interdisciplinarne tehničke znanosti, Biotehnologija, Kognitivna znanost (prirodne, tehničke, biomedicina i zdravstvo, društvene i humanističke znanosti), Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb


Citiraj ovu publikaciju:

Gambiraža, Mate; Kesedžić, Ivan; Šarlija, Marko; Popović, Siniša; Ćosić, Krešimir
Classification of Cognitive Load based on Oculometric Features // 44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Opatija, Hrvatska, 2021. str. 406-4011 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Gambiraža, M., Kesedžić, I., Šarlija, M., Popović, S. & Ćosić, K. (2021) Classification of Cognitive Load based on Oculometric Features. U: 44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021).
@article{article, author = {Gambira\v{z}a, Mate and Kesed\v{z}i\'{c}, Ivan and \v{S}arlija, Marko and Popovi\'{c}, Sini\v{s}a and \'{C}osi\'{c}, Kre\v{s}imir}, year = {2021}, pages = {406-4011}, keywords = {Cognitive Load, Classification, Eye Tracking, Pupillometry, SVM}, title = {Classification of Cognitive Load based on Oculometric Features}, keyword = {Cognitive Load, Classification, Eye Tracking, Pupillometry, SVM}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Gambira\v{z}a, Mate and Kesed\v{z}i\'{c}, Ivan and \v{S}arlija, Marko and Popovi\'{c}, Sini\v{s}a and \'{C}osi\'{c}, Kre\v{s}imir}, year = {2021}, pages = {406-4011}, keywords = {Cognitive Load, Classification, Eye Tracking, Pupillometry, SVM}, title = {Classification of Cognitive Load based on Oculometric Features}, keyword = {Cognitive Load, Classification, Eye Tracking, Pupillometry, SVM}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font