Pregled bibliografske jedinice broj: 1156250
On the representation theory of the vertex algebra $L_{;;;;;;;;-5/2};;;;;;;;(sl(4))$
On the representation theory of the vertex algebra $L_{;;;;;;;;-5/2};;;;;;;;(sl(4))$ // Communications in contemporary mathematics, 25 (2023), 2; 2150104, 42 doi:10.1142/S0219199721501042 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1156250 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On the representation theory of the vertex algebra
$L_{;;;;;;;;-5/2};;;;;;;;(sl(4))$
(On the representation theory of the vertex algebra L−5/2(sl(4)))
Autori
Adamović, Dražen ; Perše, Ozren ; Vukorepa, Ivana
Izvornik
Communications in contemporary mathematics (0219-1997) 25
(2023), 2;
2150104, 42
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
affine vertex algebras ; vertex operator algebras ; fusion rules ; conformal embeddings ; representation theory
Sažetak
We study the representation theory of non- admissible simple affine vertex algebra $L_{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; (sl(4))$. We determine an explicit formula for the singular vector of conformal weight four in the universal affine vertex algebra $V^{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; (sl(4))$, and show that it generates the maximal ideal in $V^{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; (sl(4))$. We classify irreducible $L_{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; (sl(4))$--modules in the category O, and determine the fusion rules between irreducible modules in the category of ordinary modules $KL_{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; $. It turns out that this fusion algebra is isomorphic to the fusion algebra of $KL_{; ; ; ; ; ; ; ; -1}; ; ; ; ; ; ; ; $. We also prove that $KL_{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; $ is a semi-simple, rigid braided tensor category. In our proofs we use the notion of collapsing level for the affine W--algebra, and the properties of conformal embedding gl(4)↪sl(5) at level k=−5/2 from arXiv:1509.06512. We show that k=−5/2 is a collapsing level with respect to the subregular nilpotent element f_subreg, meaning that the simple quotient of the affine W--algebra $W_{; ; ; ; ; ; ; ; -5/2}; ; ; ; ; ; ; ; (sl(4), f_subreg)$ is isomorphic to the Heisenberg vertex algebra M_J(1). We prove certain results on vanishing and non-vanishing of cohomology for the quantum Hamiltonian reduction functor H_fsubreg. It turns out that the properties of H_fsubreg are more subtle than in the case of minimal reducition.
Izvorni jezik
Engleski
Znanstvena područja
Matematika
POVEZANOST RADA
Projekti:
--KK.01.1.1.01.0004 - Provedba vrhunskih istraživanja u sklopu Znanstvenog centra izvrsnosti za kvantne i kompleksne sustave te reprezentacije Liejevih algebri (QuantiXLie) (Buljan, Hrvoje; Pandžić, Pavle) ( CroRIS)
Ustanove:
Prirodoslovno-matematički fakultet, Matematički odjel, Zagreb,
Prirodoslovno-matematički fakultet, Zagreb
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus