Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1155535

How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs


Ptiček, Martina
How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs // Proceedings of 32nd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Pergler, Elisabeth ; Grđ, Petra (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021. str. 175-182 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1155535 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs

Autori
Ptiček, Martina

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 32nd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Pergler, Elisabeth ; Grđ, Petra - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021, 175-182

Skup
32nd Central European Conference on Information and Intelligent Systems (CECIIS 2021)

Mjesto i datum
Varaždin, Hrvatska, 13.10.2021. - 15.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Sentiment analysis, contextual word embeddings, multilingual BERT, Croatian language

Sažetak
Contextual word embeddings like BERT or GPT give the state-of-the-art results in a vast array of tasks in NLP - especially when applied to English datasets, given the fact that these models themselves were trained on numerous data in English language. However, the successfulness of these models has not yet been sufficiently researched for low resource languages, as Croatian. This paper describes a comparison between the application of BERT based multilingual word embeddings (mBERT, DistilBERT, XLM-RoBERTa, CroSloEngual) in sentiment analysis on tweets in Croatian language. The article shows that BERT based multilingual models give good results in sentiment analysis in Croatian language, particularly the models trained on larger sets of data in Croatian as XLM-RoBERTa and CroSloEngual.

Izvorni jezik
Engleski

Znanstvena područja
Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Fakultet organizacije i informatike, Varaždin

Profili:

Avatar Url Martina Ptiček (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada archive.ceciis.foi.hr

Citiraj ovu publikaciju:

Ptiček, Martina
How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs // Proceedings of 32nd International Scientific Conference Central European Conference on Information and Intelligent Systems / Vrček, Neven ; Pergler, Elisabeth ; Grđ, Petra (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021. str. 175-182 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ptiček, M. (2021) How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs. U: Vrček, N., Pergler, E. & Grđ, P. (ur.)Proceedings of 32nd International Scientific Conference Central European Conference on Information and Intelligent Systems.
@article{article, author = {Pti\v{c}ek, Martina}, year = {2021}, pages = {175-182}, keywords = {Sentiment analysis, contextual word embeddings, multilingual BERT, Croatian language}, title = {How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs}, keyword = {Sentiment analysis, contextual word embeddings, multilingual BERT, Croatian language}, publisher = {Fakultet organizacije i informatike Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Vara\v{z}din, Hrvatska} }
@article{article, author = {Pti\v{c}ek, Martina}, year = {2021}, pages = {175-182}, keywords = {Sentiment analysis, contextual word embeddings, multilingual BERT, Croatian language}, title = {How good BERT based models are in sentiment analysis of Croatian tweets: comparison of four multilingual BERTs}, keyword = {Sentiment analysis, contextual word embeddings, multilingual BERT, Croatian language}, publisher = {Fakultet organizacije i informatike Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Vara\v{z}din, Hrvatska} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Social Science Citation Index (SSCI)
    • Conference Proceedings Citation Index - Social Sciences & Humanities (CPCI-SSH)





Contrast
Increase Font
Decrease Font
Dyslexic Font