Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1155445

The Polarity of Croatian Online News Related to COVID-19: A First Insight


Ilić, Anton; Beliga, Slobodan
The Polarity of Croatian Online News Related to COVID-19: A First Insight // Proceedings of 32nd Central European Conference on Information and Intelligent Systems – CECIIS 2021 / Vrček, Neven ; Pergler, Elisabeth ; Grd, Petra. (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021. str. 237-246 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1155445 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
The Polarity of Croatian Online News Related to COVID-19: A First Insight

Autori
Ilić, Anton ; Beliga, Slobodan

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of 32nd Central European Conference on Information and Intelligent Systems – CECIIS 2021 / Vrček, Neven ; Pergler, Elisabeth ; Grd, Petra. - Varaždin : Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021, 237-246

Skup
32nd Central European Conference on Information and Intelligent Systems (CECIIS 2021)

Mjesto i datum
Varaždin, Hrvatska, 13.10.2021. - 15.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
sentiment analysis ; COVID-19 ; online news articles ; sentiment lexicon ; machine learning ; VADER

Sažetak
The polarity of online news publications thematically related to COVID-19 is analysed. A collection of sentiment annotations for news articles written in the Croatian language was created and compose a new Cro-CoV-Senti-articles-2020 dataset. The news article's sentiment is derived from the reactions of portal readers. In addition, well-known sentiment analysis approaches that use lexicons and machine learning algorithms have been implemented to automatically determine the sentiment of online news. Besides, the VADER framework was used in parallel. It has been found that for the purposes of crisis communication analysis when rapid analysis solutions are needed, existing tools can be used for preliminary sentiment analysis despite some technical shortcomings. However, for a more extensive analysis of the media space and highly valuable insights, some refinements are needed. This preliminary analysis, on a sample of approximately 3, 400 newspaper articles related to COVID-19, finds that readers perceive as many as two-thirds of articles negatively rather than positively.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( CroRIS)

Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka

Profili:

Avatar Url Slobodan Beliga (autor)

Citiraj ovu publikaciju:

Ilić, Anton; Beliga, Slobodan
The Polarity of Croatian Online News Related to COVID-19: A First Insight // Proceedings of 32nd Central European Conference on Information and Intelligent Systems – CECIIS 2021 / Vrček, Neven ; Pergler, Elisabeth ; Grd, Petra. (ur.).
Varaždin: Fakultet organizacije i informatike Sveučilišta u Zagrebu, 2021. str. 237-246 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Ilić, A. & Beliga, S. (2021) The Polarity of Croatian Online News Related to COVID-19: A First Insight. U: Vrček, N., Pergler, E. & Grd, P. (ur.)Proceedings of 32nd Central European Conference on Information and Intelligent Systems – CECIIS 2021.
@article{article, author = {Ili\'{c}, Anton and Beliga, Slobodan}, year = {2021}, pages = {237-246}, keywords = {sentiment analysis, COVID-19, online news articles, sentiment lexicon, machine learning, VADER}, title = {The Polarity of Croatian Online News Related to COVID-19: A First Insight}, keyword = {sentiment analysis, COVID-19, online news articles, sentiment lexicon, machine learning, VADER}, publisher = {Fakultet organizacije i informatike Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Vara\v{z}din, Hrvatska} }
@article{article, author = {Ili\'{c}, Anton and Beliga, Slobodan}, year = {2021}, pages = {237-246}, keywords = {sentiment analysis, COVID-19, online news articles, sentiment lexicon, machine learning, VADER}, title = {The Polarity of Croatian Online News Related to COVID-19: A First Insight}, keyword = {sentiment analysis, COVID-19, online news articles, sentiment lexicon, machine learning, VADER}, publisher = {Fakultet organizacije i informatike Sveu\v{c}ili\v{s}ta u Zagrebu}, publisherplace = {Vara\v{z}din, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font