Pregled bibliografske jedinice broj: 1154365
Utilization of Convolutional Neural Networks for Urinary Bladder Cancer Diagnosis Recognition From CT Imagery
Utilization of Convolutional Neural Networks for Urinary Bladder Cancer Diagnosis Recognition From CT Imagery // 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)
Kragujevac: Institute of Electrical and Electronics Engineers (IEEE), 2021. str. 1-6 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
CROSBI ID: 1154365 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Utilization of Convolutional Neural Networks for
Urinary Bladder Cancer Diagnosis Recognition
From CT Imagery
Autori
Lorencin, Ivan ; Smolić, Klara ; Baressi Šegota, Sandi ; Anđelić, Nikola ; Štifanić, Daniel ; Musulin, Jelena ; Markić, Dean ; Španjol, Josip ; Car, Zlatan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo
Izvornik
2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)
/ - Kragujevac : Institute of Electrical and Electronics Engineers (IEEE), 2021, 1-6
Skup
21st IEEE International Conference on BioInformatics and BioEngineering (BIBE 2021)
Mjesto i datum
Kragujevac, Srbija, 25.10.2021. - 27.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Artificial intelligence, Convolutional neural network, Machine learning, Urinary bladder cancer
Sažetak
In this paper, an approach for urinary bladder cancer diagnosis from computer tomography (CT) images based on the application of convolutional neural networks (CNN) is presented. The image data set that consists of three main parts (frontal, horizontal, and sagittal plane) is used. In order to classify images, pre-defined CNN architectures are used. CNN performances are evaluated by using 5-fold cross-validation procedure that gives information about classification and generalization performances. From the presented results, it can be noticed that higher performances are achieved if more complex CNN architectures are used. Higher performances can be noticed regardless of a plane in which images are captured. An increase in performances can be noticed in both classification and generalization context.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo, Temeljne tehničke znanosti, Kliničke medicinske znanosti, Biotehnologija u biomedicini (prirodno područje, biomedicina i zdravstvo, biotehničko područje)
POVEZANOST RADA
Projekti:
Ostalo-CEI - 305.6019-20 - Use of regressive artificial intelligence (AI) and machine learning (ML) methods in modelling of COVID-19 spread (COVIDAi) (Car, Zlatan, Ostalo - CEI Extraordinary Call for Proposals 2020) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-275-1447 - Razvoj inteligentnog ekspertnog sustava za online diagnostiku raka mokračnog mjehura (Car, Zlatan, NadSve - UNIRI potpore) ( CroRIS)
--KK.01.2.2.03.0004 - Centar kompetencija za pametne gradove (CEKOM) (Car, Zlatan; Slavić, Nataša; Vilke, Siniša) ( CroRIS)
Ustanove:
Medicinski fakultet, Rijeka,
Tehnički fakultet, Rijeka,
Klinički bolnički centar Rijeka
Profili:
Josip Španjol
(autor)
Klara Smolić
(autor)
Nikola Anđelić
(autor)
Sandi Baressi Šegota
(autor)
Dean Markić
(autor)
Ivan Lorencin
(autor)
Zlatan Car
(autor)
Jelena Musulin
(autor)
Daniel Štifanić
(autor)