Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1154001

Fejér type inequalities for higher order convex functions and weighted three-point quadrature formulae


Ribičić Penava, Mihaela
Fejér type inequalities for higher order convex functions and weighted three-point quadrature formulae // Book of abstracts International Conference on Mathematical Sciences (ICMS-2021) / Dhodiya, Jayesh M. (ur.).
Surat: Sardar Vallabhbhai National Institute of Technology, 2021. str. 34-34 (predavanje, međunarodna recenzija, sažetak, znanstveni)


CROSBI ID: 1154001 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Fejér type inequalities for higher order convex functions and weighted three-point quadrature formulae

Autori
Ribičić Penava, Mihaela

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

Izvornik
Book of abstracts International Conference on Mathematical Sciences (ICMS-2021) / Dhodiya, Jayesh M. - Surat : Sardar Vallabhbhai National Institute of Technology, 2021, 34-34

Skup
Ifth International Conference of Mathematical Sciences (ICMS 2021)

Mjesto i datum
Surat, Indija, 07.10.2021. - 09.10.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Fejér type inequalities, three-point integral formula, higher order convex functions

Sažetak
The main aim of this note is to present some new Fejér type inequalities for higher order convex functions and a general three-point integral formula. The importance and significance of our paper are reflected in the way in which we prove new Fejér-type inequalities for higher-order convex functions and the general weighted three- point quadrature formula by using a weighted version of the integral identity expressed by w- harmonic sequences of functions, the properties of harmonic sequences of polynomials and the properties of n-convex functions. Also, we derive Fejér-type estimates for a generalization of the Gauss–Legendre three-point quadrature formula, and a generalization of the Gauss– Chebyshev three- point quadrature formula of the first and of the second kind.

Izvorni jezik
Engleski

Znanstvena područja
Matematika



POVEZANOST RADA


Ustanove:
Sveučilište u Osijeku, Odjel za matematiku

Profili:

Avatar Url Mihaela Ribičić Penava (autor)


Citiraj ovu publikaciju:

Ribičić Penava, Mihaela
Fejér type inequalities for higher order convex functions and weighted three-point quadrature formulae // Book of abstracts International Conference on Mathematical Sciences (ICMS-2021) / Dhodiya, Jayesh M. (ur.).
Surat: Sardar Vallabhbhai National Institute of Technology, 2021. str. 34-34 (predavanje, međunarodna recenzija, sažetak, znanstveni)
Ribičić Penava, M. (2021) Fejér type inequalities for higher order convex functions and weighted three-point quadrature formulae. U: Dhodiya, J. (ur.)Book of abstracts International Conference on Mathematical Sciences (ICMS-2021).
@article{article, author = {Ribi\v{c}i\'{c} Penava, Mihaela}, editor = {Dhodiya, J.}, year = {2021}, pages = {34-34}, keywords = {Fej\'{e}r type inequalities, three-point integral formula, higher order convex functions}, title = {Fej\'{e}r type inequalities for higher order convex functions and weighted three-point quadrature formulae}, keyword = {Fej\'{e}r type inequalities, three-point integral formula, higher order convex functions}, publisher = {Sardar Vallabhbhai National Institute of Technology}, publisherplace = {Surat, Indija} }
@article{article, author = {Ribi\v{c}i\'{c} Penava, Mihaela}, editor = {Dhodiya, J.}, year = {2021}, pages = {34-34}, keywords = {Fej\'{e}r type inequalities, three-point integral formula, higher order convex functions}, title = {Fej\'{e}r type inequalities for higher order convex functions and weighted three-point quadrature formulae}, keyword = {Fej\'{e}r type inequalities, three-point integral formula, higher order convex functions}, publisher = {Sardar Vallabhbhai National Institute of Technology}, publisherplace = {Surat, Indija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font