Pregled bibliografske jedinice broj: 115394
Reverse inequalities on chaotically geometric mean via Specht ratio, II
Reverse inequalities on chaotically geometric mean via Specht ratio, II // Journal of inequalities in pure and applied mathematics, 4 (2003), 2; 40-1 (podatak o recenziji nije dostupan, članak, znanstveni)
CROSBI ID: 115394 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Reverse inequalities on chaotically geometric mean via Specht ratio, II
Autori
Fujii, Masatochi ; Mićić, Jadranka ; Pečarić, Josip ; Seo, Yuki
Izvornik
Journal of inequalities in pure and applied mathematics (1443-5756) 4
(2003), 2;
40-1
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Operator concavity; Power mean; Arithmetic mean; Geometric mean
Sažetak
In 1967, as a converse of the arithmetic-geometric mean inequality, Mond and Shisha gave an estimate of the difference between the arithmetic mean and the geometric one, which we call it the Mond-Shisha difference. As an application of Mond-Pečarić method, we show some order relations between the power means of positive operators on a Hilbert space. Among other, we show that the upper bound of the difference between the arithmetic mean and the chaotically geometric one of positive operators coincides with the Mond-Shisha difference.
Izvorni jezik
Engleski
Znanstvena područja
Matematika