Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1153537

Chart Classification Using Siamese CNN


Bajić, Filip; Job, Josip
Chart Classification Using Siamese CNN // MDPI Journal of Imaging, 7 (2021), 11; 220, 18 doi:10.3390/jimaging7110220 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1153537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Chart Classification Using Siamese CNN

Autori
Bajić, Filip ; Job, Josip

Izvornik
MDPI Journal of Imaging (2313-433X) 7 (2021), 11; 220, 18

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
chart classification ; chart image processing ; data visualization ; Siamese neural network ; image processing and computer vision

Sažetak
In recovering information from the chart image, the first step should be chart type classification. Throughout history, many approaches have been used, and some of them achieve results better than others. The latest articles are using a Support Vector Machine (SVM) in combination with a Convolutional Neural Network (CNN), which achieve almost perfect results with the datasets of few thousand images per class. The datasets containing chart images are primarily synthetic and lack real-world examples. To overcome the problem of small datasets, to our knowledge, this is the first report of using Siamese CNN architecture for chart type classification. Multiple network architectures are tested, and the results of different dataset sizes are compared. The network verification is conducted using Few-shot learning (FSL). Many of described advantages of Siamese CNNs are shown in examples. In the end, we show that the Siamese CNN can work with one image per class, and a 100% average classification accuracy is achieved with 50 images per class, where the CNN achieves only average classification accuracy of 43% for the same dataset.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek,
Sveučilište u Zagrebu

Profili:

Avatar Url Josip Job (autor)

Avatar Url Filip Bajić (autor)

Citiraj ovu publikaciju:

Bajić, Filip; Job, Josip
Chart Classification Using Siamese CNN // MDPI Journal of Imaging, 7 (2021), 11; 220, 18 doi:10.3390/jimaging7110220 (međunarodna recenzija, članak, znanstveni)
Bajić, F. & Job, J. (2021) Chart Classification Using Siamese CNN. MDPI Journal of Imaging, 7 (11), 220, 18 doi:10.3390/jimaging7110220.
@article{article, author = {Baji\'{c}, Filip and Job, Josip}, year = {2021}, pages = {18}, DOI = {10.3390/jimaging7110220}, chapter = {220}, keywords = {chart classification, chart image processing, data visualization, Siamese neural network, image processing and computer vision}, journal = {MDPI Journal of Imaging}, doi = {10.3390/jimaging7110220}, volume = {7}, number = {11}, issn = {2313-433X}, title = {Chart Classification Using Siamese CNN}, keyword = {chart classification, chart image processing, data visualization, Siamese neural network, image processing and computer vision}, chapternumber = {220} }
@article{article, author = {Baji\'{c}, Filip and Job, Josip}, year = {2021}, pages = {18}, DOI = {10.3390/jimaging7110220}, chapter = {220}, keywords = {chart classification, chart image processing, data visualization, Siamese neural network, image processing and computer vision}, journal = {MDPI Journal of Imaging}, doi = {10.3390/jimaging7110220}, volume = {7}, number = {11}, issn = {2313-433X}, title = {Chart Classification Using Siamese CNN}, keyword = {chart classification, chart image processing, data visualization, Siamese neural network, image processing and computer vision}, chapternumber = {220} }

Časopis indeksira:


  • Web of Science Core Collection (WoSCC)
    • Emerging Sources Citation Index (ESCI)
  • Scopus


Uključenost u ostale bibliografske baze podataka::


  • DOAJ
  • EBSCO
  • Inspec
  • J-Gate
  • NLM
  • PubMed
  • PMC


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font