Pregled bibliografske jedinice broj: 1153537
Chart Classification Using Siamese CNN
Chart Classification Using Siamese CNN // MDPI Journal of Imaging, 7 (2021), 11; 220, 18 doi:10.3390/jimaging7110220 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1153537 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Chart Classification Using Siamese CNN
Autori
Bajić, Filip ; Job, Josip
Izvornik
MDPI Journal of Imaging (2313-433X) 7
(2021), 11;
220, 18
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
chart classification ; chart image processing ; data visualization ; Siamese neural network ; image processing and computer vision
Sažetak
In recovering information from the chart image, the first step should be chart type classification. Throughout history, many approaches have been used, and some of them achieve results better than others. The latest articles are using a Support Vector Machine (SVM) in combination with a Convolutional Neural Network (CNN), which achieve almost perfect results with the datasets of few thousand images per class. The datasets containing chart images are primarily synthetic and lack real-world examples. To overcome the problem of small datasets, to our knowledge, this is the first report of using Siamese CNN architecture for chart type classification. Multiple network architectures are tested, and the results of different dataset sizes are compared. The network verification is conducted using Few-shot learning (FSL). Many of described advantages of Siamese CNNs are shown in examples. In the end, we show that the Siamese CNN can work with one image per class, and a 100% average classification accuracy is achieved with 50 images per class, where the CNN achieves only average classification accuracy of 43% for the same dataset.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike, računarstva i informacijskih tehnologija Osijek,
Sveučilište u Zagrebu
Citiraj ovu publikaciju:
Časopis indeksira:
- Web of Science Core Collection (WoSCC)
- Emerging Sources Citation Index (ESCI)
- Scopus
Uključenost u ostale bibliografske baze podataka::
- DOAJ
- EBSCO
- Inspec
- J-Gate
- NLM
- PubMed
- PMC