Pregled bibliografske jedinice broj: 1153290
Implementing neural networks for FE post-processing
Implementing neural networks for FE post-processing // 5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Rijeka, Hrvatska, 2021. str. 45-45 (predavanje, nije recenziran, sažetak, znanstveni)
CROSBI ID: 1153290 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Implementing neural networks for FE post-processing
(Primjena neuronskih mreža za post-processing
konačnih elemenata)
Autori
Zlatić, M. ; Čanađija, M.
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
ISBN
978-953-165-136-3
Skup
5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Mjesto i datum
Rijeka, Hrvatska, 23.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Nije recenziran
Ključne riječi
Deep learning, finite elements, data driven modelling
Sažetak
In recent years machine learning has become more popular especially since open source libraires such as TensorFlow have become available. Neural networks have been used in computational mechanics for a long time [1] but were a fringe area. However, with an increase in computational power and availability of easy to implement libraries such as Keras, machine learning is quickly gaining more traction [2, 3]. In this paper the possibility of using neural networks to post-process finite element displacements is investigated and proven to be a viable application. This proof of concept was done on 2D membrane finite elements and a reduction in computational time was observed.
Izvorni jezik
Engleski
Znanstvena područja
Strojarstvo, Temeljne tehničke znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka