Pregled bibliografske jedinice broj: 1151534
Negation Detection Using NooJ
Negation Detection Using NooJ // Proceedings of the 44th International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2021 / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 263-267
CROSBI ID: 1151534 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Negation Detection Using NooJ
Autori
Thakkar, Gaurish ; Mikelić Preradović, Nives ; Tadić, Marko
Vrsta, podvrsta i kategorija rada
Poglavlja u knjigama, znanstveni
Knjiga
Proceedings of the 44th International Convention on Information and Communication Technology, Electronics and Microelectronics MIPRO 2021
Urednik/ci
Skala, Karolj
Izdavač
Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO
Grad
Rijeka
Godina
2021
Raspon stranica
263-267
ISSN
1847-3938
Ključne riječi
Negation ; noisy labels ; labelling functions ; unsupervised learning
Sažetak
The availability of extensive annotated data for natural language processing tasks is an unsolved problem. Transfer learning techniques usually mitigate these issues by relying on existing models in another language. If no such models exist, the whole transfer learning setup becomes an implausible option. This paper presents a simple approach to use grammar rule as a noisy labelling function to train a classic generative- discriminative classification setup. The approach relies on a simple NooJ grammar along with a series of other data labelling functions. We evaluate the approach on the Conan- Doyle dataset for the task of explicit negation detection with a lowresource setting and report an improvement of 2% over the baseline.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
EK-H2020-812997 - Cross-lingual Event-centric Open Analytics Research Academy (Cleopatra) (Tadić, Marko, EK - H2020-MSCA-ITN-2018) ( CroRIS)
Ustanove:
Filozofski fakultet, Zagreb