Pregled bibliografske jedinice broj: 1151435
Deep Semi-Supervised Algorithm for Learning Cluster-Oriented Representations of Medical Images Using Partially Observable DICOM Tags and Images
Deep Semi-Supervised Algorithm for Learning Cluster-Oriented Representations of Medical Images Using Partially Observable DICOM Tags and Images // Diagnostics, 11 (2021), 10; 1920, 20 doi:10.3390/diagnostics11101920 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1151435 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep Semi-Supervised Algorithm for Learning
Cluster-Oriented Representations of Medical Images
Using Partially Observable DICOM Tags and Images
Autori
Manojlović, Teo ; Štajduhar, Ivan
Izvornik
Diagnostics (2075-4418) 11
(2021), 10;
1920, 20
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
deep clustering ; semi-supervised learning ; autoencoder ; medical imaging ; PACS ; DICOM
Sažetak
The task of automatically extracting large homogeneous datasets of medical images based on detailed criteria and/or semantic similarity can be challenging because the acquisition and storage of medical images in clinical practice is not fully standardised and can be prone to errors, which are often made unintentionally by medical professionals during manual input. In this paper, we propose an algorithm for learning cluster- oriented representations of medical images by fusing images with partially observable DICOM tags. Pairwise relations are modelled by thresholding the Gower distance measure which is calculated using eight DICOM tags. We trained the models using 30, 000 images, and we tested them using a disjoint test set consisting of 8000 images, gathered retrospectively from the PACS repository of the Clinical Hospital Centre Rijeka in 2017. We compare our method against the standard and deep unsupervised clustering algorithms, as well as the popular semi-supervised algorithms combined with the most commonly used feature descriptors. Our model achieves an NMI score of 0.584 with respect to the anatomic region, and an NMI score of 0.793 with respect to the modality. The results suggest that DICOM data can be used to generate pairwise constraints that can help improve medical images clustering, even when using only a small number of constraints.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Kliničke medicinske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2020-02-3770 - Strojno učenje za prijenos znanja u medicinskoj radiologiji (RadiologyNET) (Štajduhar, Ivan, HRZZ - 2020-02) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-tehnic-18-15 - Razvoj postupaka temeljenih na strojnom učenju za prepoznavanje bolesti i ozljeda iz medicinskih slika (Štajduhar, Ivan, NadSve ) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Ivan Štajduhar
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus