Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1151155

Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics


Šečić, Adnan; Krpan, Matej; Kuzle, Igor
Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics // IEEE transactions on power delivery, 37 (2022), 4; 3038-3050 doi:10.1109/TPWRD.2021.3121472 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1151155 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics

Autori
Šečić, Adnan ; Krpan, Matej ; Kuzle, Igor

Izvornik
IEEE transactions on power delivery (0885-8977) 37 (2022), 4; 3038-3050

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
OLTC ; maintenance ; Vibro-acoustic diagnostics ; Deep Learning Neural Networks ; Harmonic-Percussive Source Separation ; Semi Blind Source Separation

Sažetak
This paper proposes a sound separation methodology based on deep learning neural network (DLNN) to extract useful diagnostic material in non-invasive audio-based On-Load Tap Changer (OLTC) diagnostics. The proposed methodology has been experimentally verified on both artificial mixtures (created by reproducing the targeted data by the speakers placed next to the active transformers) and actual mixtures (recorded by the microphone during OLTC live operation in the field). The results show that the method produces high-quality estimates (correlation to referent fingerprints ρ > 0.9) compared to other sound separation methods, e.g. Independent Component Analysis (ICA). The proposed framework can also perform source separation from a monaural mixture (mixture recorded with a single microphone only), which is impossible for ICA methods. Moreover, the results show that DLNN trained with healthy OLTC data produces diagnostically valuable estimates even when fed with a faulty OLTC audio mixture. For that reason, once trained, the DLNN can produce the diagnostic signal estimates from monaural mixtures that can be used with existing vibration-based diagnostic methods.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Matej Krpan (autor)

Avatar Url Adnan Šečić (autor)

Avatar Url Igor Kuzle (autor)

Citiraj ovu publikaciju:

Šečić, Adnan; Krpan, Matej; Kuzle, Igor
Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics // IEEE transactions on power delivery, 37 (2022), 4; 3038-3050 doi:10.1109/TPWRD.2021.3121472 (međunarodna recenzija, članak, znanstveni)
Šečić, A., Krpan, M. & Kuzle, I. (2022) Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics. IEEE transactions on power delivery, 37 (4), 3038-3050 doi:10.1109/TPWRD.2021.3121472.
@article{article, author = {\v{S}e\v{c}i\'{c}, Adnan and Krpan, Matej and Kuzle, Igor}, year = {2022}, pages = {3038-3050}, DOI = {10.1109/TPWRD.2021.3121472}, keywords = {OLTC, maintenance, Vibro-acoustic diagnostics, Deep Learning Neural Networks, Harmonic-Percussive Source Separation, Semi Blind Source Separation}, journal = {IEEE transactions on power delivery}, doi = {10.1109/TPWRD.2021.3121472}, volume = {37}, number = {4}, issn = {0885-8977}, title = {Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics}, keyword = {OLTC, maintenance, Vibro-acoustic diagnostics, Deep Learning Neural Networks, Harmonic-Percussive Source Separation, Semi Blind Source Separation} }
@article{article, author = {\v{S}e\v{c}i\'{c}, Adnan and Krpan, Matej and Kuzle, Igor}, year = {2022}, pages = {3038-3050}, DOI = {10.1109/TPWRD.2021.3121472}, keywords = {OLTC, maintenance, Vibro-acoustic diagnostics, Deep Learning Neural Networks, Harmonic-Percussive Source Separation, Semi Blind Source Separation}, journal = {IEEE transactions on power delivery}, doi = {10.1109/TPWRD.2021.3121472}, volume = {37}, number = {4}, issn = {0885-8977}, title = {Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics}, keyword = {OLTC, maintenance, Vibro-acoustic diagnostics, Deep Learning Neural Networks, Harmonic-Percussive Source Separation, Semi Blind Source Separation} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font