Pregled bibliografske jedinice broj: 1151155
Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics
Using Deep Neural Networks for On-Load Tap Changer Audio-based Diagnostics // IEEE transactions on power delivery, 37 (2022), 4; 3038-3050 doi:10.1109/TPWRD.2021.3121472 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1151155 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Using Deep Neural Networks for On-Load Tap Changer
Audio-based Diagnostics
Autori
Šečić, Adnan ; Krpan, Matej ; Kuzle, Igor
Izvornik
IEEE transactions on power delivery (0885-8977) 37
(2022), 4;
3038-3050
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
OLTC ; maintenance ; Vibro-acoustic diagnostics ; Deep Learning Neural Networks ; Harmonic-Percussive Source Separation ; Semi Blind Source Separation
Sažetak
This paper proposes a sound separation methodology based on deep learning neural network (DLNN) to extract useful diagnostic material in non-invasive audio-based On-Load Tap Changer (OLTC) diagnostics. The proposed methodology has been experimentally verified on both artificial mixtures (created by reproducing the targeted data by the speakers placed next to the active transformers) and actual mixtures (recorded by the microphone during OLTC live operation in the field). The results show that the method produces high-quality estimates (correlation to referent fingerprints ρ > 0.9) compared to other sound separation methods, e.g. Independent Component Analysis (ICA). The proposed framework can also perform source separation from a monaural mixture (mixture recorded with a single microphone only), which is impossible for ICA methods. Moreover, the results show that DLNN trained with healthy OLTC data produces diagnostically valuable estimates even when fed with a faulty OLTC audio mixture. For that reason, once trained, the DLNN can produce the diagnostic signal estimates from monaural mixtures that can be used with existing vibration-based diagnostic methods.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Poveznice na cjeloviti tekst rada:
Pristup cjelovitom tekstu rada doi www.researchgate.net ieeexplore.ieee.orgCitiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus