Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1150551

Deep learning-generated rod finite elements


Košmerl, Valentina; Čanađija, Marko
Deep learning-generated rod finite elements // 5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“ / Grbčić, Ana ; Lopac, Nikola ; Strabić, Marko ; Dugonjić-Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran (ur.).
Rijeka, 2021. str. 23-24 (predavanje, domaća recenzija, sažetak, znanstveni)


CROSBI ID: 1150551 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning-generated rod finite elements

Autori
Košmerl, Valentina ; Čanađija, Marko

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni

ISBN
978-953-165-136-3

Skup
5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“

Mjesto i datum
Rijeka, Hrvatska, 23.09.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Domaća recenzija

Ključne riječi
Deep learning, finite element, isoparametric formulation, functionally graded material

Sažetak
Numerous technological innovations that provide clear benefits that society sorely needs require new and advanced materials with their superior properties. The unique mechanical behaviour of these materials is inadequately described by conventional models and therefore poorly understood. Consequently, machine learning approaches appear to be a potential tool for characterizing complex material properties. The stiffness matrix contains information on the mechanical properties of the material whose key component is the strain-displacement matrix. In this research, we utilized deep learning methods to generate a strain-displacement matrix at Gauss points. The intrinsic coordinate system-based isoparametric formulation was employed to derive the element stiffness matrix and equations. The proposed method is utilized to develop quadratic 1D linear elastic and functionally graded rod finite elements with varying Young’s modulus. The dataset included nodal coordinates, nodal displacements, and strain of the finite element. Several sets of data including training data, test data, and validation data were employed to obtain the best feasible prediction model. The numerical tests indicated a satisfying model's performance.

Izvorni jezik
Engleski

Znanstvena područja
Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Profili:

Avatar Url Marko Čanađija (autor)

Avatar Url Valentina Košmerl (autor)


Citiraj ovu publikaciju:

Košmerl, Valentina; Čanađija, Marko
Deep learning-generated rod finite elements // 5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“ / Grbčić, Ana ; Lopac, Nikola ; Strabić, Marko ; Dugonjić-Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran (ur.).
Rijeka, 2021. str. 23-24 (predavanje, domaća recenzija, sažetak, znanstveni)
Košmerl, V. & Čanađija, M. (2021) Deep learning-generated rod finite elements. U: Grbčić, A., Lopac, N., Strabić, M., Dugonjić-Jovančević, S., Franulović, M. & Vukelić, G. (ur.)5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“.
@article{article, author = {Ko\v{s}merl, Valentina and \v{C}ana\djija, Marko}, year = {2021}, pages = {23-24}, keywords = {Deep learning, finite element, isoparametric formulation, functionally graded material}, isbn = {978-953-165-136-3}, title = {Deep learning-generated rod finite elements}, keyword = {Deep learning, finite element, isoparametric formulation, functionally graded material}, publisherplace = {Rijeka, Hrvatska} }
@article{article, author = {Ko\v{s}merl, Valentina and \v{C}ana\djija, Marko}, year = {2021}, pages = {23-24}, keywords = {Deep learning, finite element, isoparametric formulation, functionally graded material}, isbn = {978-953-165-136-3}, title = {Deep learning-generated rod finite elements}, keyword = {Deep learning, finite element, isoparametric formulation, functionally graded material}, publisherplace = {Rijeka, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font