Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1150303

Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval


Markuš, Nenad; Pandžić, Igor; Ahlberg, Jörgen
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval // IEEE Transactions on Image Processing, 28 (2019), 1; 279-290 doi:10.1109/tip.2018.2867270 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1150303 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval

Autori
Markuš, Nenad ; Pandžić, Igor ; Ahlberg, Jörgen

Izvornik
IEEE Transactions on Image Processing (1057-7149) 28 (2019), 1; 279-290

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Videos, Three-dimensional displays, Standards, Face, Data mining, Visualization, Computer vision

Sažetak
Current best local descriptors are learned on a large data set of matching and non-matching keypoint pairs. However, data of this kind are not always available, since the detailed keypoint correspondences can be hard to establish. On the other hand, we can often obtain labels for pairs of keypoint bags. For example, keypoint bags extracted from two images of the same object under different views form a matching pair, and keypoint bags extracted from images of different objects form a non-matching pair. On average, matching pairs should contain more corresponding keypoints than non-matching pairs. We describe an end-to-end differentiable architecture that enables the learning of local keypoint descriptors from such weakly labeled data. In addition, we discuss how to improve the method by incorporating the procedure of mining hard negatives. We also show how our approach can be used to learn convolutional features from unlabeled video signals and 3D models.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Projekti:
HRZZ-IP-2013-11-8065 - Komunikacije usmjerene čovjeku u pametnim mrežama (HUTS) (Matijašević, Maja, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Igor Sunday Pandžić (autor)

Avatar Url Nenad Markuš (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Markuš, Nenad; Pandžić, Igor; Ahlberg, Jörgen
Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval // IEEE Transactions on Image Processing, 28 (2019), 1; 279-290 doi:10.1109/tip.2018.2867270 (međunarodna recenzija, članak, znanstveni)
Markuš, N., Pandžić, I. & Ahlberg, J. (2019) Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval. IEEE Transactions on Image Processing, 28 (1), 279-290 doi:10.1109/tip.2018.2867270.
@article{article, author = {Marku\v{s}, Nenad and Pand\v{z}i\'{c}, Igor and Ahlberg, J\"{o}rgen}, year = {2019}, pages = {279-290}, DOI = {10.1109/tip.2018.2867270}, keywords = {Videos, Three-dimensional displays, Standards, Face, Data mining, Visualization, Computer vision}, journal = {IEEE Transactions on Image Processing}, doi = {10.1109/tip.2018.2867270}, volume = {28}, number = {1}, issn = {1057-7149}, title = {Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval}, keyword = {Videos, Three-dimensional displays, Standards, Face, Data mining, Visualization, Computer vision} }
@article{article, author = {Marku\v{s}, Nenad and Pand\v{z}i\'{c}, Igor and Ahlberg, J\"{o}rgen}, year = {2019}, pages = {279-290}, DOI = {10.1109/tip.2018.2867270}, keywords = {Videos, Three-dimensional displays, Standards, Face, Data mining, Visualization, Computer vision}, journal = {IEEE Transactions on Image Processing}, doi = {10.1109/tip.2018.2867270}, volume = {28}, number = {1}, issn = {1057-7149}, title = {Learning Local Descriptors by Optimizing the Keypoint-Correspondence Criterion: Applications to Face Matching, Learning From Unlabeled Videos and 3D-Shape Retrieval}, keyword = {Videos, Three-dimensional displays, Standards, Face, Data mining, Visualization, Computer vision} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font