Pregled bibliografske jedinice broj: 1148983
Prediction of COVID-19 related information spreading on Twitter
Prediction of COVID-19 related information spreading on Twitter // 44th International convention on Information, Communication and Electronic Technology (MIPRO) – proceedings / Skala, Karolj (ur.).
Rijeka: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 395-399 doi:10.23919/MIPRO52101.2021.9596693 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1148983 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Prediction of COVID-19 related information spreading on
Twitter
Autori
Babić, Karlo ; Petrović, Milan ; Beliga, Slobodan ; Martinčić-Ipšić, Sanda ; Pranjić, Marko ; Meštrović, Ana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
44th International convention on Information, Communication and Electronic Technology (MIPRO) – proceedings
/ Skala, Karolj - Rijeka : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 395-399
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
information spreading ; neural networks ; NLP ; Twitter ; COVID-19
Sažetak
In this paper, we explore the influence of COVID-19 related content in tweets on their spreadability. The experiment is performed in two steps on the dataset of tweets in the Croatian language posted during the COVID-19 pandemics. In the first step, we train a feedforward neural network model to predict if a tweet is highly-spreadable or not. The trained model achieves 62.5\% accuracy on the binary classification problem. In the second step, we use this model in a set of experiments for predicting the average spreadability of tweets. In these experiments, we separate the original dataset into two disjoint subsets: one composed of tweets filtered using COVID- 19 related keywords and the other that contains the rest of the tweets. Additionally, we modified these two subsets by adding and removing tokens into tweets and thus making them artificially COVID-19 related or not related. Our preliminary results indicate that tweets that are semantically related to COVID-19 have on average higher spreadability than the tweets that are not semantically related to COVID-19.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( CroRIS)
NadSve-Sveučilište u Rijeci-uniri-drustv-18-38 - Postupci mjerenja semantičke sličnosti tekstova (SemText) (Meštrović, Ana, NadSve - Natječaj za dodjelu sredstava potpore znanstvenim istraživanjima na Sveučilištu u Rijeci za 2018. godinu - projekti iskusnih znanstvenika i umjetnika) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Marko Pranjić
(autor)
Sanda Martinčić - Ipšić
(autor)
Slobodan Beliga
(autor)
Karlo Babić
(autor)
Ana Meštrović
(autor)