Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1148337

Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier


Lučin, Ivana; Lučin, Bože; Čarija, Zoran; Sikirica, Ante
Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier // Mathematics, 9 (2021), 6; 672, 14 doi:10.3390/math9060672 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1148337 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier

Autori
Lučin, Ivana ; Lučin, Bože ; Čarija, Zoran ; Sikirica, Ante

Izvornik
Mathematics (2227-7390) 9 (2021), 6; 672, 14

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
leak localization ; water distribution network ; random forest ; prediction modeling ; big data

Sažetak
In the present paper, a Random Forest classifier is used to detect leak locations on two different sized water distribution networks with sparse sensor placement. A great number of leak scenarios were simulated with Monte Carlo determined leak parameters (leak location and emitter coefficient). In order to account for demand variations that occur on a daily basis and to obtain a larger dataset, scenarios were simulated with random base demand increments or reductions for each network node. Classifier accuracy was assessed for different sensor layouts and numbers of sensors. Multiple prediction models were constructed for differently sized leakage and demand range variations in order to investigate model accuracy under various conditions. Results indicate that the prediction model provides the greatest accuracy for the largest leaks, with the smallest variation in base demand (62% accuracy for greater- and 82% for smaller-sized networks, for the largest considered leak size and a base demand variation of ±2.5%). However, even for small leaks and the greatest base demand variations, the prediction model provided considerable accuracy, especially when localizing the sources of leaks when the true leak node and neighbor nodes were considered (for a smaller-sized network and a base demand of variation ±20% the model accuracy increased from 44% to 89% when top five nodes with greatest probability were considered, and for a greater-sized network with a base demand variation of ±10% the accuracy increased from 36% to 77%).

Izvorni jezik
Engleski

Znanstvena područja
Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Ustanove:
Tehnički fakultet, Rijeka,
Sveučilište u Rijeci

Profili:

Avatar Url Ivana Lučin (autor)

Avatar Url Ante Sikirica (autor)

Avatar Url Zoran Čarija (autor)

Poveznice na cjeloviti tekst rada:

doi

Citiraj ovu publikaciju:

Lučin, Ivana; Lučin, Bože; Čarija, Zoran; Sikirica, Ante
Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier // Mathematics, 9 (2021), 6; 672, 14 doi:10.3390/math9060672 (međunarodna recenzija, članak, znanstveni)
Lučin, I., Lučin, B., Čarija, Z. & Sikirica, A. (2021) Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier. Mathematics, 9 (6), 672, 14 doi:10.3390/math9060672.
@article{article, author = {Lu\v{c}in, Ivana and Lu\v{c}in, Bo\v{z}e and \v{C}arija, Zoran and Sikirica, Ante}, year = {2021}, pages = {14}, DOI = {10.3390/math9060672}, chapter = {672}, keywords = {leak localization, water distribution network, random forest, prediction modeling, big data}, journal = {Mathematics}, doi = {10.3390/math9060672}, volume = {9}, number = {6}, issn = {2227-7390}, title = {Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier}, keyword = {leak localization, water distribution network, random forest, prediction modeling, big data}, chapternumber = {672} }
@article{article, author = {Lu\v{c}in, Ivana and Lu\v{c}in, Bo\v{z}e and \v{C}arija, Zoran and Sikirica, Ante}, year = {2021}, pages = {14}, DOI = {10.3390/math9060672}, chapter = {672}, keywords = {leak localization, water distribution network, random forest, prediction modeling, big data}, journal = {Mathematics}, doi = {10.3390/math9060672}, volume = {9}, number = {6}, issn = {2227-7390}, title = {Data-Driven Leak Localization in Urban Water Distribution Networks Using Big Data for Random Forest Classifier}, keyword = {leak localization, water distribution network, random forest, prediction modeling, big data}, chapternumber = {672} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font