Pregled bibliografske jedinice broj: 1147510
Performance Estimation of Encrypted Video Streaming in Light of End-User Playback-Related Interactions
Performance Estimation of Encrypted Video Streaming in Light of End-User Playback-Related Interactions // Proceedings of the 12th ACM Multimedia Systems Conference
New York (NY): Association for Computing Machinery (ACM), 2021. str. 413-417 doi:10.1145/3458305.3478467 (ostalo, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1147510 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Performance Estimation of Encrypted Video
Streaming in Light of End-User Playback-Related
Interactions
Autori
Bartolec, Ivan
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 12th ACM Multimedia Systems Conference
/ - New York (NY) : Association for Computing Machinery (ACM), 2021, 413-417
ISBN
978-1-4503-8434-6
Skup
12th ACM Multimedia Systems Conference (MMSys 2021)
Mjesto i datum
Istanbul, Turska, 28.09.2021. - 01.10.2021
Vrsta sudjelovanja
Ostalo
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Quality of Experience, Encrypted Video, Machine Learning, User Behavior, User Interactions
Sažetak
Our research will look into realistic end-user service usage behavior patterns and their corresponding implications on the in-network Quality of Experience (QoE) monitoring for HTTP adaptive video streaming (HAS) services in wireless and mobile networks. The main goal is to establish a methodology for developing and testing machine learning (ML) based models for estimating end-user QoE-related Key Performance Indicators (KPIs) in the context of user- initiated playback interactions. The initial phase will be to investigate user behavior when utilizing video streaming services on mobile devices and propose a user interaction model. In addition, a methodology for automated data collecting, processing, and analysis will be created, which will include the creation of a framework that combines user interaction simulation based on the proposed model. Extensive experiments will be carried out to train ML models for KPI estimation, and the resultant KPI estimation models will be evaluated. This paper presents a current state-of-the-art review of the corresponding topics, as well as the current state of our research, preliminary findings, and plans for ongoing and future work.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-9793 - Modeliranje i praćenje iskustvene kvalitete imerzivnih višemedijskih usluga u 5G mrežama (Q-MERSIVE) (Skorin-Kapov, Lea, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb
Profili:
Ivan Bartolec
(autor)