Pregled bibliografske jedinice broj: 1147459
Smart Agriculture and Digital Transformation on Case of Intelligent System for Wine Quality Prediction
Smart Agriculture and Digital Transformation on Case of Intelligent System for Wine Quality Prediction // MIPRO 2021, 44th International Convention Proceedings / Skala, Karolj (ur.).
Opatija: Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021. str. 1565-1570 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1147459 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Smart Agriculture and Digital Transformation on
Case of Intelligent System for Wine Quality
Prediction
(Smart Agriculture and Digital Transformation on Case
of Intelligent System for Wine Quality Prediction)
Autori
Oreški, Dijana ; Pihir, Igor ; Cajzek, Ksenija
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
MIPRO 2021, 44th International Convention Proceedings
/ Skala, Karolj - Opatija : Hrvatska udruga za informacijsku i komunikacijsku tehnologiju, elektroniku i mikroelektroniku - MIPRO, 2021, 1565-1570
Skup
44th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2021)
Mjesto i datum
Opatija, Hrvatska, 27.09.2021. - 01.10.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
smart agriculture ; digital transformation ; industry 4.0 ; machine learning ; decision tree
Sažetak
The use of emerging technologies such as Industry 4.0 in the digital transformation of businesses is growing exponentially in various domains including agriculture. Implementation of digital transformation leads to innovation and automatization in business processes. IoT technologies combined with machine learning approaches achieve significant benefits in agriculture. This paper focuses on wine quality prediction and suggests an intelligent system based on the machine learning methodology of the decision tree. The effectiveness of classification and regression trees has improved a great deal to help in prediction. By using a public data set, the decision tree is developed consisting of red and white wines characteristics with their quality assessed by experts. Based on the developed predictive model intelligent system is constructed to fully automate the process of wine quality detection.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin