Pregled bibliografske jedinice broj: 1147415
Meta-features of learning management system data
Meta-features of learning management system data // Proceedings of the Twelfth International Conference on e-Learning / Domazet, Bojana ; Raspopović Milić, Miroslava (ur.).
Beograd: Metropolitan University, 2021. str. 40-44 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1147415 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Meta-features of learning management system data
Autori
Oreški, Dijana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the Twelfth International Conference on e-Learning
/ Domazet, Bojana ; Raspopović Milić, Miroslava - Beograd : Metropolitan University, 2021, 40-44
Skup
12th International Conference on e-Learning
Mjesto i datum
Beograd, Srbija, 23.09.2021. - 24.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
meta-features ; LMS data ; machine learning ; meta-learning.
Sažetak
Educational institutions tend to use learning management systems (LMS) to enhance teaching and learning process. An LMS collects data about students’ activities in log files. This data is used in prediction of student success. Machine learning algorithms are increasingly used to support development of accurate and reliable descriptive and predictive models from educational data. However, selection of machine learning algorithm is complex task and depends on characteristics of dataset used in the analysis. Characteristics of dataset (meta-features) can explain why one machine learning algorithm performs better on certain dataset than other algoriths. Meta-learning field deals with this issue. Identification of meta-feature in educational domain is still insufficiently researched area. In this paper, we are trying to fill that gap by providing meta-features identification in educational domain. Our focus are general meta-features and learning management system data. Research results indicated patterns in LMS datasets meta-features.
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-UIP-2020-02-6312 - SIMON: Inteligentni sustav za automatsku selekciju algoritama strojnog učenja u društvenim znanostima (SIMON) (Oreški, Dijana, HRZZ - 2020-02) ( CroRIS)
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Dijana Oreški
(autor)