Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1147320

Emotion recognition based on EEG feature maps through deep learning network


Topić, Ante; Russo, Mladen
Emotion recognition based on EEG feature maps through deep learning network // Engineering Science and Technology, an International Journal, 24 (2021), 6; 1442-1454 doi:10.1016/j.jestch.2021.03.012 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1147320 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Emotion recognition based on EEG feature maps through deep learning network

Autori
Topić, Ante ; Russo, Mladen

Izvornik
Engineering Science and Technology, an International Journal (2215-0986) 24 (2021), 6; 1442-1454

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Brain-computer interface, Electroencephalogram, Emotion recognition, Valence-arousal model, Deep learning, Computer-generated holography

Sažetak
Emotion recognition using electroencephalogram (EEG) signals is getting more and more attention in recent years. Since the EEG signals are noisy, non-linear and have non- stationary properties, it is a challenging task to develop an intelligent framework that can provide high accuracy for emotion recognition. In this paper, we propose a new model for emotion recognition that will be based on the creation of feature maps based on the topographic (TOPO-FM) and holographic (HOLO-FM) representation of EEG signal characteristics. Deep learning has been utilized as a feature extractor method on feature maps, and afterward extracted features are fused together for the classification process to recognize different kinds of emotions. The experiments are conducted on the four publicly available emotion datasets: DEAP, SEED, DREAMER, and AMIGOS. We demonstrated the effectiveness of our approaches in comparison with studies where authors used EEG signals that classify human emotions in the two-dimensional space. Experimental results show that the proposed methods can improve the emotion recognition rate on the different size datasets.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika, Računarstvo, Interdisciplinarne tehničke znanosti, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Projekti:
UIP-2014-09-3875 - Pametna okruženja za poboljšanje kvalitete života (ELISE) (Russo, Mladen, HRZZ - 2014-09) ( CroRIS)
EK-EFRR-KK.01.1.1.07.0079 - VITA – Virtualna Telemedicinska Asistencija (VITA) (Russo, Mladen, EK - Jačanje kapaciteta za istraživanje, razvoj i inovacije, referentni broj poziva KK.01.1.1.07) ( CroRIS)

Ustanove:
Fakultet elektrotehnike, strojarstva i brodogradnje, Split

Profili:

Avatar Url ANTE TOPIĆ (autor)

Avatar Url Mladen Russo (autor)

Citiraj ovu publikaciju:

Topić, Ante; Russo, Mladen
Emotion recognition based on EEG feature maps through deep learning network // Engineering Science and Technology, an International Journal, 24 (2021), 6; 1442-1454 doi:10.1016/j.jestch.2021.03.012 (međunarodna recenzija, članak, znanstveni)
Topić, A. & Russo, M. (2021) Emotion recognition based on EEG feature maps through deep learning network. Engineering Science and Technology, an International Journal, 24 (6), 1442-1454 doi:10.1016/j.jestch.2021.03.012.
@article{article, author = {Topi\'{c}, Ante and Russo, Mladen}, year = {2021}, pages = {1442-1454}, DOI = {10.1016/j.jestch.2021.03.012}, keywords = {Brain-computer interface, Electroencephalogram, Emotion recognition, Valence-arousal model, Deep learning, Computer-generated holography}, journal = {Engineering Science and Technology, an International Journal}, doi = {10.1016/j.jestch.2021.03.012}, volume = {24}, number = {6}, issn = {2215-0986}, title = {Emotion recognition based on EEG feature maps through deep learning network}, keyword = {Brain-computer interface, Electroencephalogram, Emotion recognition, Valence-arousal model, Deep learning, Computer-generated holography} }
@article{article, author = {Topi\'{c}, Ante and Russo, Mladen}, year = {2021}, pages = {1442-1454}, DOI = {10.1016/j.jestch.2021.03.012}, keywords = {Brain-computer interface, Electroencephalogram, Emotion recognition, Valence-arousal model, Deep learning, Computer-generated holography}, journal = {Engineering Science and Technology, an International Journal}, doi = {10.1016/j.jestch.2021.03.012}, volume = {24}, number = {6}, issn = {2215-0986}, title = {Emotion recognition based on EEG feature maps through deep learning network}, keyword = {Brain-computer interface, Electroencephalogram, Emotion recognition, Valence-arousal model, Deep learning, Computer-generated holography} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font