Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1145953

Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies


Čanađija, Marko
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies // Carbon, 184 (2021), 891-901 doi:10.1016/j.carbon.2021.08.091 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1145953 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies

Autori
Čanađija, Marko

Izvornik
Carbon (0008-6223) 184 (2021); 891-901

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Single-walled carbon nanotubes ; Deep learning ; Artificial neural networks ; Mechanical properties ; Molecular dynamics

Sažetak
Tensile tests at room temperature are performed using molecular dynamics on all configurations of single-walled carbon nanotubes up to 4 nm in diameter. Distributions of the Young's modulus, Poisson's ratio, ultimate tensile strength and fracture strain are determined and reported. The results show that the chirality of the nanotube has the greatest influence on the properties. An artificial neural network is developed for the dataset obtained by molecular dynamics and used to predict the mechanical properties. It is clearly shown that Deep Learning provides accurate predictions, with the further advantage that thermal fluctuations are smoothed out. In addition, a through analysis of the effect of dataset size on prediction quality is performed, providing modeling strategies for further researchers.

Izvorni jezik
Engleski

Znanstvena područja
Fizika, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)

Ustanove:
Tehnički fakultet, Rijeka

Profili:

Avatar Url Marko Čanađija (autor)

Poveznice na cjeloviti tekst rada:

doi arxiv.org www.sciencedirect.com

Citiraj ovu publikaciju:

Čanađija, Marko
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies // Carbon, 184 (2021), 891-901 doi:10.1016/j.carbon.2021.08.091 (međunarodna recenzija, članak, znanstveni)
Čanađija, M. (2021) Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies. Carbon, 184, 891-901 doi:10.1016/j.carbon.2021.08.091.
@article{article, author = {\v{C}ana\djija, Marko}, year = {2021}, pages = {891-901}, DOI = {10.1016/j.carbon.2021.08.091}, keywords = {Single-walled carbon nanotubes, Deep learning, Artificial neural networks, Mechanical properties, Molecular dynamics}, journal = {Carbon}, doi = {10.1016/j.carbon.2021.08.091}, volume = {184}, issn = {0008-6223}, title = {Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies}, keyword = {Single-walled carbon nanotubes, Deep learning, Artificial neural networks, Mechanical properties, Molecular dynamics} }
@article{article, author = {\v{C}ana\djija, Marko}, year = {2021}, pages = {891-901}, DOI = {10.1016/j.carbon.2021.08.091}, keywords = {Single-walled carbon nanotubes, Deep learning, Artificial neural networks, Mechanical properties, Molecular dynamics}, journal = {Carbon}, doi = {10.1016/j.carbon.2021.08.091}, volume = {184}, issn = {0008-6223}, title = {Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies}, keyword = {Single-walled carbon nanotubes, Deep learning, Artificial neural networks, Mechanical properties, Molecular dynamics} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font