Pregled bibliografske jedinice broj: 1145953
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies // Carbon, 184 (2021), 891-901 doi:10.1016/j.carbon.2021.08.091 (međunarodna recenzija, članak, znanstveni)
CROSBI ID: 1145953 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Deep learning framework for carbon nanotubes: Mechanical properties and modeling strategies
Autori
Čanađija, Marko
Izvornik
Carbon (0008-6223) 184
(2021);
891-901
Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni
Ključne riječi
Single-walled carbon nanotubes ; Deep learning ; Artificial neural networks ; Mechanical properties ; Molecular dynamics
Sažetak
Tensile tests at room temperature are performed using molecular dynamics on all configurations of single-walled carbon nanotubes up to 4 nm in diameter. Distributions of the Young's modulus, Poisson's ratio, ultimate tensile strength and fracture strain are determined and reported. The results show that the chirality of the nanotube has the greatest influence on the properties. An artificial neural network is developed for the dataset obtained by molecular dynamics and used to predict the mechanical properties. It is clearly shown that Deep Learning provides accurate predictions, with the further advantage that thermal fluctuations are smoothed out. In addition, a through analysis of the effect of dataset size on prediction quality is performed, providing modeling strategies for further researchers.
Izvorni jezik
Engleski
Znanstvena područja
Fizika, Temeljne tehničke znanosti, Interdisciplinarne tehničke znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-4703 - Nelokalni mehanički modeli nanogreda (nonNano) (Čanađija, Marko, HRZZ - 2019-04) ( CroRIS)
Ustanove:
Tehnički fakultet, Rijeka
Profili:
Marko Čanađija
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Current Contents Connect (CCC)
- Web of Science Core Collection (WoSCC)
- Science Citation Index Expanded (SCI-EXP)
- SCI-EXP, SSCI i/ili A&HCI
- Scopus