Pregled bibliografske jedinice broj: 1145500
A baseline for semi-supervised learning of efficient semantic segmentation models
A baseline for semi-supervised learning of efficient semantic segmentation models // Proceedings of MVA 2021 - 17th International Conference on Machine Vision Applications
Okazaki, Japan, 2021. str. 1-5 doi:10.23919/mva51890.2021.9511402 (poster, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1145500 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
A baseline for semi-supervised learning of efficient
semantic segmentation models
Autori
Grubišić, Ivan ; Oršić, Marin ; Šegvić, Siniša
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of MVA 2021 - 17th International Conference on Machine Vision Applications
/ - , 2021, 1-5
Skup
17th International Conference on Machine Vision Applications (MVA 2021)
Mjesto i datum
Okazaki, Japan, 25.07.2021. - 27.07.2021
Vrsta sudjelovanja
Poster
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
computer vision ; semantic segmentation ; semi-supervised learning
Sažetak
Semi-supervised learning is especially interesting in the dense prediction context due to high cost of pixel-level ground truth. Unfortunately, most such approaches are evaluated on outdated architectures which hamper research due to very slow training and high requirements on GPU RAM. We address this concern by presenting a simple and effective baseline which works very well both on standard and efficient architectures. Our baseline is based on one-way consistency and nonlinear geometric and photometric perturbations. We show advantage of perturbing only the student branch and present a plausible explanation of such behaviour. Experiments on Cityscapes and CIFAR-10 demonstrate competitive performance with respect to prior work.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo
POVEZANOST RADA
Projekti:
--IP-2020-02-5851 - Napredna gusta predikcija za računalni vid (ADEPT) (Šegvić, Siniša) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb