Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1145102

Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach


Serrano Jiménez, Alfredo; Sánchez Muzas, Alberto P.; Zhang, Yaolong; Ovčar, Juraj; Jiang, Bin; Lončarić, Ivor; Juaristi, J. Iñaki; Alducin, Maite
Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach // Journal of chemical theory and computation, 17 (2021), 8; 4648-4659 doi:10.1021/acs.jctc.1c00347 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1145102 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach

Autori
Serrano Jiménez, Alfredo ; Sánchez Muzas, Alberto P. ; Zhang, Yaolong ; Ovčar, Juraj ; Jiang, Bin ; Lončarić, Ivor ; Juaristi, J. Iñaki ; Alducin, Maite

Izvornik
Journal of chemical theory and computation (1549-9618) 17 (2021), 8; 4648-4659

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Density functional theory ; Neural networks

Sažetak
Modeling the ultrafast photoinduced dynamics and reactivity of adsorbates on metals requires including the effect of the laser-excited electrons and, in many cases, also the effect of the highly excited surface lattice. Although the recent ab initio molecular dynamics with electronic friction and thermostats, (Te, Tl)- AIMDEF [Alducin, M. ; Phys. Rev. Lett. 2019, 123, 246802], enables such complex modeling, its computational cost may limit its applicability. Here, we use the new embedded atom neural network (EANN) method [Zhang, Y. ; J. Phys. Chem. Lett. 2019, 10, 4962] to develop an accurate and extremely complex potential energy surface (PES) that allows us a detailed and reliable description of the photoinduced desorption of CO from the Pd(111) surface with a coverage of 0.75 monolayer. Molecular dynamics simulations performed on this EANN-PES reproduce the (Te, Tl)- AIMDEF results with a remarkable level of accuracy. This demonstrates the outstanding performance of the obtained EANN-PES that is able to reproduce available density functional theory (DFT) data for an extensive range of surface temperatures (90–1000 K) ; a large number of degrees of freedom, those corresponding to six CO adsorbates and 24 moving surface atoms ; and the varying CO coverage caused by the abundant desorption events.

Izvorni jezik
Engleski

Znanstvena područja
Fizika



POVEZANOST RADA


Projekti:
HRZZ-UIP-2020-02-5675 - Povećanje prostorne i vremenske skale modeliranja materijala iz prvih principa pomoću strojnog učenja (ExtMatModelML) (Lončarić, Ivor, HRZZ ) ( CroRIS)

Ustanove:
Institut "Ruđer Bošković", Zagreb

Profili:

Avatar Url Juraj Ovčar (autor)

Avatar Url Ivor Lončarić (autor)

Poveznice na cjeloviti tekst rada:

doi pubs.acs.org doi.org

Citiraj ovu publikaciju:

Serrano Jiménez, Alfredo; Sánchez Muzas, Alberto P.; Zhang, Yaolong; Ovčar, Juraj; Jiang, Bin; Lončarić, Ivor; Juaristi, J. Iñaki; Alducin, Maite
Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach // Journal of chemical theory and computation, 17 (2021), 8; 4648-4659 doi:10.1021/acs.jctc.1c00347 (međunarodna recenzija, članak, znanstveni)
Serrano Jiménez, A., Sánchez Muzas, A., Zhang, Y., Ovčar, J., Jiang, B., Lončarić, I., Juaristi, J. & Alducin, M. (2021) Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach. Journal of chemical theory and computation, 17 (8), 4648-4659 doi:10.1021/acs.jctc.1c00347.
@article{article, author = {Serrano Jim\'{e}nez, Alfredo and S\'{a}nchez Muzas, Alberto P. and Zhang, Yaolong and Ov\v{c}ar, Juraj and Jiang, Bin and Lon\v{c}ari\'{c}, Ivor and Juaristi, J. I\~{n}aki and Alducin, Maite}, year = {2021}, pages = {4648-4659}, DOI = {10.1021/acs.jctc.1c00347}, keywords = {Density functional theory, Neural networks}, journal = {Journal of chemical theory and computation}, doi = {10.1021/acs.jctc.1c00347}, volume = {17}, number = {8}, issn = {1549-9618}, title = {Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach}, keyword = {Density functional theory, Neural networks} }
@article{article, author = {Serrano Jim\'{e}nez, Alfredo and S\'{a}nchez Muzas, Alberto P. and Zhang, Yaolong and Ov\v{c}ar, Juraj and Jiang, Bin and Lon\v{c}ari\'{c}, Ivor and Juaristi, J. I\~{n}aki and Alducin, Maite}, year = {2021}, pages = {4648-4659}, DOI = {10.1021/acs.jctc.1c00347}, keywords = {Density functional theory, Neural networks}, journal = {Journal of chemical theory and computation}, doi = {10.1021/acs.jctc.1c00347}, volume = {17}, number = {8}, issn = {1549-9618}, title = {Photoinduced Desorption Dynamics of CO from Pd(111): A Neural Network Approach}, keyword = {Density functional theory, Neural networks} }

Časopis indeksira:


  • Current Contents Connect (CCC)
  • Web of Science Core Collection (WoSCC)
    • Science Citation Index Expanded (SCI-EXP)
    • SCI-EXP, SSCI i/ili A&HCI
  • Scopus
  • MEDLINE


Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font