Pregled bibliografske jedinice broj: 1144523
Application of Machine Learning Methods on IoT Parking Sensors’ Data
Application of Machine Learning Methods on IoT Parking Sensors’ Data // Proceedings of Sixth International Congress on Information and Communication Technology / Yang, XS. ; Sherratt, S. ; Dey, N. ; Joshi, A. (ur.).
Singapur: Springer, 2021. str. 157-164 doi:10.1007/978-981-16-2380-6_14 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1144523 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Application of Machine Learning Methods on IoT Parking Sensors’ Data
Autori
Vuk, Dražen ; Andročec, Darko
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of Sixth International Congress on Information and Communication Technology
/ Yang, XS. ; Sherratt, S. ; Dey, N. ; Joshi, A. - Singapur : Springer, 2021, 157-164
ISBN
978-981-16-2379-0
Skup
6th International Congress on Information and Communication Technology
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 25.02.2021. - 26.02.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
Machine learning ; Parking sensor ; Smart city ; Artificial neural networks ; Internet of things
Sažetak
Internet of things brings many innovations and will impact our everyday life. Smart parking is one of the important IoT usage scenarios in urban environments. In this work, we show how to use machine learning methods on Internet of things parking sensors’ data to detect free parking spaces. We have used about 100, 000 instances of data from NBPS parking sensors provided by Mobilisis company. These are actual data from parking sensors with a magnetometer deployed all over the world. The data was preprocessed, normalized, and clustered, because temperature has a large effect on the value of the magnetometer. Next, the XGBoost algorithm and different architectures of artificial neural networks were used to predict whether the parking space is free or not. Used machine learning methods achieve better accuracy than the current classic algorithm based on the history data of a particular parking sensor that is currently used in production (Mobilisis smart parking solution).
Izvorni jezik
Engleski
Znanstvena područja
Informacijske i komunikacijske znanosti
POVEZANOST RADA
Ustanove:
Fakultet organizacije i informatike, Varaždin
Profili:
Darko Andročec
(autor)