Pregled bibliografske jedinice broj: 1144165
On Evolutionary Metaheuristic Optimization Approaches in Data-Driven Signal Processing Techniques
On Evolutionary Metaheuristic Optimization Approaches in Data-Driven Signal Processing Techniques // My First Conference 2021 – Book of Abstracts / Grbčić, Ana ; Lopac, Nikola ; Strabić, Marko ; Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran (ur.).
Rijeka: Pomorski fakultet Sveučilišta u Rijeci, 2021. str. 27-27 (predavanje, domaća recenzija, sažetak, znanstveni)
CROSBI ID: 1144165 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
On Evolutionary Metaheuristic Optimization
Approaches
in Data-Driven Signal Processing Techniques
(On Evolutionary Metaheuristic Optimization
Approaches in Data-Driven Signal Processing
Techniques)
Autori
Lopac, Nikola ; Lerga, Jonatan ; Jurdana, Irena
Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, sažetak, znanstveni
Izvornik
My First Conference 2021 – Book of Abstracts
/ Grbčić, Ana ; Lopac, Nikola ; Strabić, Marko ; Dugonjić Jovančević, Sanja ; Franulović, Marina ; Vukelić, Goran - Rijeka : Pomorski fakultet Sveučilišta u Rijeci, 2021, 27-27
ISBN
978-953-165-136-3
Skup
5th edition of annual conference for doctoral students of engineering and technology „MY FIRST CONFERENCE“
Mjesto i datum
Rijeka, Hrvatska, 23.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Domaća recenzija
Ključne riječi
signal processing ; data-driven algorithms ; evolutionary metaheuristic optimization ; particle swarm optimization ; genetic algorithm
Sažetak
Data-driven signal processing techniques are used for many practical applications in various fields [1]. Due to their local-adaptive properties, these techniques enable processing noisy signals, regardless of knowledge of the signal models and characteristics [2]. The performance of the data-driven methods depends on the proper selection of algorithm parameters [3, 4]. Besides the extensive grid search in the parameter space, the advanced evolutionary metaheuristic optimization techniques, such as particle swarm optimization (PSO)-based algorithms and genetic algorithms (GA) [5], can also be an efficient solution for parameter optimization. This work considers some aspects of their implementation.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika, Računarstvo
POVEZANOST RADA
Ustanove:
Tehnički fakultet, Rijeka,
Pomorski fakultet, Rijeka