Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1143244

Countywide natural gas consumption forecast, a machine learning approach


Sičanica, Zlatan; Oklopčić, Zdravko
Countywide natural gas consumption forecast, a machine learning approach // IEEE Explore - 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
Opatija, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1070-1073 doi:10.23919/mipro.2018.8400195 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)


CROSBI ID: 1143244 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Countywide natural gas consumption forecast, a machine learning approach

Autori
Sičanica, Zlatan ; Oklopčić, Zdravko

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo

Izvornik
IEEE Explore - 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) / - : Institute of Electrical and Electronics Engineers (IEEE), 2018, 1070-1073

Skup
41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO 2018)

Mjesto i datum
Opatija, Hrvatska, 21.05.2018. - 25.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Natural gas ; forecasting ; regression ; machine learning ; optimization ; intelligent systems ; time series

Sažetak
This paper proposes several machine learning models for gas consumption forecast. The consumption data used is for a county in Croatia, and the considered models are decision trees, linear regressors, support vector regression, and neural networks. Most of the models show promising results when compared to similar research. The criterion used to identify the forecast quality is the root of the mean squared error, error being the forecast difference from the expected value. The findings presented in this paper can be used to better understand the way natural gas is consumed in the county and to create a more sophisticated regressor in the future.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo



POVEZANOST RADA


Profili:

Avatar Url Zlatan Sičanica (autor)

Avatar Url Zdravko Oklopčić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Sičanica, Zlatan; Oklopčić, Zdravko
Countywide natural gas consumption forecast, a machine learning approach // IEEE Explore - 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
Opatija, Hrvatska: Institute of Electrical and Electronics Engineers (IEEE), 2018. str. 1070-1073 doi:10.23919/mipro.2018.8400195 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
Sičanica, Z. & Oklopčić, Z. (2018) Countywide natural gas consumption forecast, a machine learning approach. U: IEEE Explore - 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) doi:10.23919/mipro.2018.8400195.
@article{article, author = {Si\v{c}anica, Zlatan and Oklop\v{c}i\'{c}, Zdravko}, year = {2018}, pages = {1070-1073}, DOI = {10.23919/mipro.2018.8400195}, keywords = {Natural gas, forecasting, regression, machine learning, optimization, intelligent systems, time series}, doi = {10.23919/mipro.2018.8400195}, title = {Countywide natural gas consumption forecast, a machine learning approach}, keyword = {Natural gas, forecasting, regression, machine learning, optimization, intelligent systems, time series}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {Si\v{c}anica, Zlatan and Oklop\v{c}i\'{c}, Zdravko}, year = {2018}, pages = {1070-1073}, DOI = {10.23919/mipro.2018.8400195}, keywords = {Natural gas, forecasting, regression, machine learning, optimization, intelligent systems, time series}, doi = {10.23919/mipro.2018.8400195}, title = {Countywide natural gas consumption forecast, a machine learning approach}, keyword = {Natural gas, forecasting, regression, machine learning, optimization, intelligent systems, time series}, publisher = {Institute of Electrical and Electronics Engineers (IEEE)}, publisherplace = {Opatija, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font