Pregled bibliografske jedinice broj: 1142868
COVID-19-Related Communication on Twitter: Analysis of the Croatian and Polish Attitudes
COVID-19-Related Communication on Twitter: Analysis of the Croatian and Polish Attitudes // Proceedings of Sixth International Congress on Information and Communication Technology / Yang, Xin-She ; Sherratt, Simon ; Dey, Nilanjan ; Joshi, Amit (ur.).
London : Delhi: Springer, 2021. str. 379-390 doi:10.1007/978-981-16-1781-2_35 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1142868 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
COVID-19-Related Communication on Twitter: Analysis of the Croatian and Polish Attitudes
Autori
Babić, Karlo ; Petrović, Milan ; Beliga, Slobodan ; Martinčić-Ipšić, Sanda ; Jarynowski, Andrzej ; Meštrović, Ana
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of Sixth International Congress on Information and Communication Technology
/ Yang, Xin-She ; Sherratt, Simon ; Dey, Nilanjan ; Joshi, Amit - London : Delhi : Springer, 2021, 379-390
ISBN
978-981-16-1781-2
Skup
6th International Conference on Inventive Computation Technologies (ICICT 2021)
Mjesto i datum
London, Ujedinjeno Kraljevstvo, 20.01.2021. - 21.01.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
COVID-19 ; Twitter ; social media ; sentiment analysis ; NLP
Sažetak
In this paper, we analyze and compare Croatian and Polish Twitter datasets. After collecting tweets related to COVID-19 in the period from 20.01.2020 until 01.07.2020, we automatically annotated positive, negative, and neutral tweets with a simple method, and then used a classifier to annotate the dataset again. To interpret the data, the total number as well as the number of positive and negative tweets are plotted through time for Croatian and Polish tweets. The positive/negative fluctuations in the visualizations are explained in the context of certain events, such as the lockdowns, Easter, and parliamentary elections. In the last step, we analyze tokens by extracting the most frequently occurring tokens in positive or negative tweets and calculating the positive to negative (and reverse) ratios.
Izvorni jezik
Engleski
Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti
POVEZANOST RADA
Projekti:
HRZZ-IP-CORONA-2020-04-2061 - Višeslojni okvir za karakterizaciju širenja informacija putem društvenih medija tijekom krize COVID-19 (InfoCoV) (Meštrović, Ana, HRZZ - 2020-04) ( CroRIS)
Ustanove:
Fakultet informatike i digitalnih tehnologija, Rijeka
Profili:
Sanda Martinčić - Ipšić
(autor)
Slobodan Beliga
(autor)
Karlo Babić
(autor)
Ana Meštrović
(autor)
Citiraj ovu publikaciju:
Časopis indeksira:
- Scopus