Pregled bibliografske jedinice broj: 1142213
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing // Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021) / Lončarić, Sven ; Petković, Tomislav ; Petrinović, Davor (ur.).
Zagreb: Sveučilište u Zagrebu, 2021. str. 29-35 doi:10.1109/ISPA52656.2021.9552127 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
CROSBI ID: 1142213 Za ispravke kontaktirajte CROSBI podršku putem web obrasca
Naslov
Multilevel Subsampling of Principal Component
Projections for Adaptive Compressive Sensing
Autori
Vlašić, Tin ; Seršić, Damir
Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni
Izvornik
Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021)
/ Lončarić, Sven ; Petković, Tomislav ; Petrinović, Davor - Zagreb : Sveučilište u Zagrebu, 2021, 29-35
Skup
12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021)
Mjesto i datum
Zagreb, Hrvatska, 13.09.2021. - 15.09.2021
Vrsta sudjelovanja
Predavanje
Vrsta recenzije
Međunarodna recenzija
Ključne riječi
compressive sensing ; inverse problem ; principal component analysis ; sampling theory ; sparse signal recovery
Sažetak
This paper examines the performance of principal- component-analysis (PCA) projections in compressive sensing (CS). Observed signals are assumed to follow a Gaussian distribution and have the asymptotic sparsity property in a wavelet transform domain. In order to exploit these signal priors, we propose multilevel subsampling of PCA projections in addition to sparsity-promoting $\ell_1$ regularization. The PCA projections are subsampled in levels that correspond to different wavelet scales. The proposed method outperforms universal random projections of standard CS for noise-corrupted measurement setups and compressible signals. Experimental results from simulations conducted on images from the MNIST dataset prove the framework's robustness and good reconstruction ability.
Izvorni jezik
Engleski
Znanstvena područja
Elektrotehnika
POVEZANOST RADA
Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)
Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb