Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1142213

Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing


Vlašić, Tin; Seršić, Damir
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing // Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021) / Lončarić, Sven ; Petković, Tomislav ; Petrinović, Davor (ur.).
Zagreb: Sveučilište u Zagrebu, 2021. str. 29-35 doi:10.1109/ISPA52656.2021.9552127 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1142213 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing

Autori
Vlašić, Tin ; Seršić, Damir

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021) / Lončarić, Sven ; Petković, Tomislav ; Petrinović, Davor - Zagreb : Sveučilište u Zagrebu, 2021, 29-35

Skup
12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021)

Mjesto i datum
Zagreb, Hrvatska, 13.09.2021. - 15.09.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
compressive sensing ; inverse problem ; principal component analysis ; sampling theory ; sparse signal recovery

Sažetak
This paper examines the performance of principal- component-analysis (PCA) projections in compressive sensing (CS). Observed signals are assumed to follow a Gaussian distribution and have the asymptotic sparsity property in a wavelet transform domain. In order to exploit these signal priors, we propose multilevel subsampling of PCA projections in addition to sparsity-promoting $\ell_1$ regularization. The PCA projections are subsampled in levels that correspond to different wavelet scales. The proposed method outperforms universal random projections of standard CS for noise-corrupted measurement setups and compressible signals. Experimental results from simulations conducted on images from the MNIST dataset prove the framework's robustness and good reconstruction ability.

Izvorni jezik
Engleski

Znanstvena područja
Elektrotehnika



POVEZANOST RADA


Projekti:
HRZZ-IP-2019-04-6703 - Renesansa teorije uzorkovanja (SamplingRenaissance) (Seršić, Damir, HRZZ ) ( CroRIS)

Ustanove:
Fakultet elektrotehnike i računarstva, Zagreb

Profili:

Avatar Url Damir Seršić (autor)

Avatar Url Tin Vlašić (autor)

Poveznice na cjeloviti tekst rada:

doi ieeexplore.ieee.org

Citiraj ovu publikaciju:

Vlašić, Tin; Seršić, Damir
Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing // Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021) / Lončarić, Sven ; Petković, Tomislav ; Petrinović, Davor (ur.).
Zagreb: Sveučilište u Zagrebu, 2021. str. 29-35 doi:10.1109/ISPA52656.2021.9552127 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Vlašić, T. & Seršić, D. (2021) Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing. U: Lončarić, S., Petković, T. & Petrinović, D. (ur.)Proceedings of the 12th International Symposium on Image and Signal Processing and Analysis (ISPA 2021) doi:10.1109/ISPA52656.2021.9552127.
@article{article, author = {Vla\v{s}i\'{c}, Tin and Ser\v{s}i\'{c}, Damir}, year = {2021}, pages = {29-35}, DOI = {10.1109/ISPA52656.2021.9552127}, keywords = {compressive sensing, inverse problem, principal component analysis, sampling theory, sparse signal recovery}, doi = {10.1109/ISPA52656.2021.9552127}, title = {Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing}, keyword = {compressive sensing, inverse problem, principal component analysis, sampling theory, sparse signal recovery}, publisher = {Sveu\v{c}ili\v{s}te u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }
@article{article, author = {Vla\v{s}i\'{c}, Tin and Ser\v{s}i\'{c}, Damir}, year = {2021}, pages = {29-35}, DOI = {10.1109/ISPA52656.2021.9552127}, keywords = {compressive sensing, inverse problem, principal component analysis, sampling theory, sparse signal recovery}, doi = {10.1109/ISPA52656.2021.9552127}, title = {Multilevel Subsampling of Principal Component Projections for Adaptive Compressive Sensing}, keyword = {compressive sensing, inverse problem, principal component analysis, sampling theory, sparse signal recovery}, publisher = {Sveu\v{c}ili\v{s}te u Zagrebu}, publisherplace = {Zagreb, Hrvatska} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font