Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1141660

A machine learning-based forensic tool for image classification - A design science approach


Joanna Rose Del Mar-Raave, Hayretdin Bahsi, Leo Mršić, Krešimir Hausknecht
A machine learning-based forensic tool for image classification - A design science approach // Forensic Science International: Digital Investigation, 38 (2021), 1-13 doi:10.1016/j.fsidi.2021.301265 (međunarodna recenzija, članak, znanstveni)


CROSBI ID: 1141660 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A machine learning-based forensic tool for image classification - A design science approach

Autori
Joanna Rose Del Mar-Raave, Hayretdin Bahsi, Leo Mršić, Krešimir Hausknecht

Izvornik
Forensic Science International: Digital Investigation (2666-2817) 38 (2021); 1-13

Vrsta, podvrsta i kategorija rada
Radovi u časopisima, članak, znanstveni

Ključne riječi
Machine learning ; Pre-trained model ; Digital forensics ; Design science ; Image classification

Sažetak
Various fields have benefited from machine learning (ML) applications (e.g., health, finance, military), mainly for automating tasks or improving decision making capability. The area of digital forensics shows potential promise as categorizing content of seized devices for potential evidentiary value is a complicated task due to the increasing amount of data that needs to be processed. A rapid adaptation of MLbased products for such a real- life application requires the creation of engineering knowledge that would make ML models more accessible for developers while incorporating human-centric validation into user acceptance procedures. This study proposes a development process to incorporate pre-trained models to the development life- cycle of an ML-based digital forensic tool that classifies images. We applied the process and created a prototype tool that identifies handguns by rigorously following the design science methodology. We evaluated four ImageNet-trained models: InceptionV3, Xception, ResNet and VGG16. Using realistic datasets and various decision criteria, we selected the outperforming model and utilized it in the tool. The usability and learnability of the prototype were measured using the System Usability Scale (SUS) questionnaire as an early-phase usability test. Our tool was able to achieve an acceptable rating in the SUS results from the average of five respondents. This study successfully demonstrated that freely available pre-trained machine learning models without fine-tuning are feasible for use in practice.

Izvorni jezik
Engleski

Znanstvena područja
Računarstvo, Informacijske i komunikacijske znanosti



POVEZANOST RADA


Ustanove:
Visoko učilište Algebra, Zagreb

Profili:

Avatar Url Leo Mršić (autor)

Poveznice na cjeloviti tekst rada:

doi www.sciencedirect.com

Citiraj ovu publikaciju:

Joanna Rose Del Mar-Raave, Hayretdin Bahsi, Leo Mršić, Krešimir Hausknecht
A machine learning-based forensic tool for image classification - A design science approach // Forensic Science International: Digital Investigation, 38 (2021), 1-13 doi:10.1016/j.fsidi.2021.301265 (međunarodna recenzija, članak, znanstveni)
Joanna Rose Del Mar-Raave, Hayretdin Bahsi, Leo Mršić, Krešimir Hausknecht (2021) A machine learning-based forensic tool for image classification - A design science approach. Forensic Science International: Digital Investigation, 38, 1-13 doi:10.1016/j.fsidi.2021.301265.
@article{article, year = {2021}, pages = {1-13}, DOI = {10.1016/j.fsidi.2021.301265}, keywords = {Machine learning, Pre-trained model, Digital forensics, Design science, Image classification}, journal = {Forensic Science International: Digital Investigation}, doi = {10.1016/j.fsidi.2021.301265}, volume = {38}, issn = {2666-2817}, title = {A machine learning-based forensic tool for image classification - A design science approach}, keyword = {Machine learning, Pre-trained model, Digital forensics, Design science, Image classification} }
@article{article, year = {2021}, pages = {1-13}, DOI = {10.1016/j.fsidi.2021.301265}, keywords = {Machine learning, Pre-trained model, Digital forensics, Design science, Image classification}, journal = {Forensic Science International: Digital Investigation}, doi = {10.1016/j.fsidi.2021.301265}, volume = {38}, issn = {2666-2817}, title = {A machine learning-based forensic tool for image classification - A design science approach}, keyword = {Machine learning, Pre-trained model, Digital forensics, Design science, Image classification} }

Citati:





    Contrast
    Increase Font
    Decrease Font
    Dyslexic Font