Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1141548

A machine learning approach to the seismic fragility assessment of buildings


Rocchi, Alessandro; Chiozzi, Andrea; Nale, Marco; Nikolic, Zeljana; Benvenuti, Elena
A machine learning approach to the seismic fragility assessment of buildings // ECCOMAS MSF 2021 - 5th International Conference on Multi-scale Computational Methods for Solids and Fluids / Ibrahimbegović, Adnan ; Nikolić, Mijo (ur.).
Split: Građevinski fakultet Univerziteta u Sarajevu, 2021. str. 71-73 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)


CROSBI ID: 1141548 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
A machine learning approach to the seismic fragility assessment of buildings

Autori
Rocchi, Alessandro ; Chiozzi, Andrea ; Nale, Marco ; Nikolic, Zeljana ; Benvenuti, Elena

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), znanstveni

Izvornik
ECCOMAS MSF 2021 - 5th International Conference on Multi-scale Computational Methods for Solids and Fluids / Ibrahimbegović, Adnan ; Nikolić, Mijo - Split : Građevinski fakultet Univerziteta u Sarajevu, 2021, 71-73

ISBN
978-9958-638-66-4

Skup
5th International Conference on Multi-Scale Computational Methods for Solids and Fluids (ECCOMAS MSF 2021)

Mjesto i datum
Split, Hrvatska, 30.06.2021. - 02.07.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Performance-Based Earthquake Engineering ; Machine learning ; Seismic fragility assessment ; Buildings

Sažetak
In the context of Performance-Based Earthquake Engineering, an intensity measure provides a link between the probabilistic seismic hazard analysis and the probabilistic structural response analysis. The purpose of this study is to develop a structural damage classifier and improve current prediction on the basis of a given intensity measure and different supervised machine learning algorithms: Support-Vector Machine, Logistic Regression and Random Forest. In particular, the efficiency of four different IMs for estimating the seismic response of three different kind of buildings is evaluated, namely peak ground acceleration, spectral acceleration evaluated at the principal period, average spectral acceleration and filtered incremental velocity. The classifier will be able to predict the post- earthquake damage state, given the geometry of the building and the intensity of the ground motion input. In particular, the purpose of this classifier is to accelerate post- earthquake damage evaluation of critical buildings. This will allow faster recovery time and decrease financial losses expected from downtime and repair. A focus is made on three different buildings typologies that can be used to represent the majority of the building stock in the city of Ferrara (Italy).

Izvorni jezik
Engleski

Znanstvena područja
Građevinarstvo, Temeljne tehničke znanosti



POVEZANOST RADA


Projekti:
EK-INTERREG_V-A_IT-HR_2014-2020-10046122 - Sprječavanje, upravljanje i prevladavanje rizika od prirodnih katastrofa (PMO-GATE) radi ublažavanja njihova utjecaja na gospodarstvo i društvo (PMO-GATE) (Nikolić, Željana, EK - Interreg V-A 2014 – 2020 , Italy – Croatia CBC Programme) ( CroRIS)
EK-EFRR-KK.01.1.1.02.0027 - Implementacijom suvremene znanstvenoistraživačke infrastrukture na FGAG Split do pametne specijalizacije u zelenoj i energetski učinkovitoj gradnji (Jajac, Nikša, EK - KK.01.1.1.02) ( CroRIS)

Ustanove:
Fakultet građevinarstva, arhitekture i geodezije, Split

Profili:

Avatar Url Željana Nikolić (autor)

Poveznice na cjeloviti tekst rada:

Pristup cjelovitom tekstu rada gf.unsa.ba

Citiraj ovu publikaciju:

Rocchi, Alessandro; Chiozzi, Andrea; Nale, Marco; Nikolic, Zeljana; Benvenuti, Elena
A machine learning approach to the seismic fragility assessment of buildings // ECCOMAS MSF 2021 - 5th International Conference on Multi-scale Computational Methods for Solids and Fluids / Ibrahimbegović, Adnan ; Nikolić, Mijo (ur.).
Split: Građevinski fakultet Univerziteta u Sarajevu, 2021. str. 71-73 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), znanstveni)
Rocchi, A., Chiozzi, A., Nale, M., Nikolic, Z. & Benvenuti, E. (2021) A machine learning approach to the seismic fragility assessment of buildings. U: Ibrahimbegović, A. & Nikolić, M. (ur.)ECCOMAS MSF 2021 - 5th International Conference on Multi-scale Computational Methods for Solids and Fluids.
@article{article, author = {Rocchi, Alessandro and Chiozzi, Andrea and Nale, Marco and Nikolic, Zeljana and Benvenuti, Elena}, year = {2021}, pages = {71-73}, keywords = {Performance-Based Earthquake Engineering, Machine learning, Seismic fragility assessment, Buildings}, isbn = {978-9958-638-66-4}, title = {A machine learning approach to the seismic fragility assessment of buildings}, keyword = {Performance-Based Earthquake Engineering, Machine learning, Seismic fragility assessment, Buildings}, publisher = {Gra\djevinski fakultet Univerziteta u Sarajevu}, publisherplace = {Split, Hrvatska} }
@article{article, author = {Rocchi, Alessandro and Chiozzi, Andrea and Nale, Marco and Nikolic, Zeljana and Benvenuti, Elena}, year = {2021}, pages = {71-73}, keywords = {Performance-Based Earthquake Engineering, Machine learning, Seismic fragility assessment, Buildings}, isbn = {978-9958-638-66-4}, title = {A machine learning approach to the seismic fragility assessment of buildings}, keyword = {Performance-Based Earthquake Engineering, Machine learning, Seismic fragility assessment, Buildings}, publisher = {Gra\djevinski fakultet Univerziteta u Sarajevu}, publisherplace = {Split, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font