Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1141528

Non-structural approach to implied moments extraction


Šestanović, Tea; Arnerić , Josip; Aljinović, Zdravka
Non-structural approach to implied moments extraction // The 2nd International Statistical Conference in Croatia - ISCCRO 2018
Opatija, Hrvatska, 2018. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)


CROSBI ID: 1141528 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
Non-structural approach to implied moments extraction

Autori
Šestanović, Tea ; Arnerić , Josip ; Aljinović, Zdravka

Vrsta, podvrsta i kategorija rada
Sažeci sa skupova, neobjavljeni rad, znanstveni

Skup
The 2nd International Statistical Conference in Croatia - ISCCRO 2018

Mjesto i datum
Opatija, Hrvatska, 10.05.2018. - 11.05.2018

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
Edgeworth expansions ; implied moments ; mixture of two log-normals ; Shimko’s model

Sažetak
Moments of the future prices and returns are not observable, but it is possible to measure these unknown parameters indirectly. Moreover, a set of option prices with the same maturity but with different exercise prices are used to extract implied probability distribution of the underlying asset at the expiration date. Implied probability distribution is riskneutral in the absence of arbitrage. The goal of this paper is to extract market expectations from option prices and to investigate which of the non-structural models for estimating risk- neutral density (RND) give the best fit. Nonstructural models assume that only dynamics in prices is known. Mixture of two log-normals (MLN), Edgeworth expansions and Shimko’s model, i.e. the representatives of parametric, semiparametric and nonparametric approaches respectively, are compared. Previous researches are inconclusive about the superiority of one approach over the others. This paper contributes to finding which approach dominates. The model that fits data better than the others is used to describe moments of the probability distribution. The sample covers one-year data for DAX index options. The results are compared through models and maturities. All models give better short-term forecasts. In pairwise comparison, MLN is superior to the other approaches according to mean squared errors and Diebold Mariano test.

Izvorni jezik
Engleski

Znanstvena područja
Ekonomija



POVEZANOST RADA


Ustanove:
Ekonomski fakultet, Split,
Ekonomski fakultet, Zagreb

Profili:

Avatar Url Zdravka Aljinović (autor)

Avatar Url Tea Šestanović (autor)

Avatar Url Josip Arnerić (autor)

Poveznice na cjeloviti tekst rada:

www.hsd-stat.hr

Citiraj ovu publikaciju:

Šestanović, Tea; Arnerić , Josip; Aljinović, Zdravka
Non-structural approach to implied moments extraction // The 2nd International Statistical Conference in Croatia - ISCCRO 2018
Opatija, Hrvatska, 2018. (predavanje, međunarodna recenzija, neobjavljeni rad, znanstveni)
Šestanović, T., Arnerić , J. & Aljinović, Z. (2018) Non-structural approach to implied moments extraction. U: The 2nd International Statistical Conference in Croatia - ISCCRO 2018.
@article{article, author = {\v{S}estanovi\'{c}, Tea and Arneri\'{c}, Josip and Aljinovi\'{c}, Zdravka}, year = {2018}, keywords = {Edgeworth expansions, implied moments, mixture of two log-normals, Shimko’s model}, title = {Non-structural approach to implied moments extraction}, keyword = {Edgeworth expansions, implied moments, mixture of two log-normals, Shimko’s model}, publisherplace = {Opatija, Hrvatska} }
@article{article, author = {\v{S}estanovi\'{c}, Tea and Arneri\'{c}, Josip and Aljinovi\'{c}, Zdravka}, year = {2018}, keywords = {Edgeworth expansions, implied moments, mixture of two log-normals, Shimko’s model}, title = {Non-structural approach to implied moments extraction}, keyword = {Edgeworth expansions, implied moments, mixture of two log-normals, Shimko’s model}, publisherplace = {Opatija, Hrvatska} }




Contrast
Increase Font
Decrease Font
Dyslexic Font