Pretražite po imenu i prezimenu autora, mentora, urednika, prevoditelja

Napredna pretraga

Pregled bibliografske jedinice broj: 1141484

PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS


Lovrić, Mario; Fadljević, Leon; Kern, Roman; Steck, Thomas; Gerdenitsch, Johann; Peche, Ernst
PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS // Galvatech 2021 - 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet
Beč: GALVATECH 2021- ASMET, 2021. str. 310-317 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)


CROSBI ID: 1141484 Za ispravke kontaktirajte CROSBI podršku putem web obrasca

Naslov
PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS

Autori
Lovrić, Mario ; Fadljević, Leon ; Kern, Roman ; Steck, Thomas ; Gerdenitsch, Johann ; Peche, Ernst

Vrsta, podvrsta i kategorija rada
Radovi u zbornicima skupova, cjeloviti rad (in extenso), ostalo

Izvornik
Galvatech 2021 - 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet / - Beč : GALVATECH 2021- ASMET, 2021, 310-317

ISBN
978-3-200-07779-9

Skup
12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet (GALVATECH 2021)

Mjesto i datum
Beč, Austrija, 21.06.2021. - 23.06.2021

Vrsta sudjelovanja
Predavanje

Vrsta recenzije
Međunarodna recenzija

Ključne riječi
machine learning, big data, electro-galvanization, voltage

Sažetak
Anode conditions can cause an increase in production cost and quality in industrial electro galvanizing lines. We employ machine learning to predict expected rectifier voltages for a variety of steel strip types and operating conditions at an industrial electro galvanizing line. In the plating section, the strip passes twelve "Gravitel" cells and zinc from the electrolyte is deposited on the surface at high current densities. The data was collected on one exemplary rectifier unit equipped with two anodes, have been studied for a period of two years. The dataset consists of one target variable (rectifier voltage) and nine predictive variables describing electrolyte, current and steel strip characteristics. For predictive modelling, we used Random Forest Regression. The model training was conducted on intervals where anodes were freshly exchanged. Our results show a Normalized Root Mean Square Error of Prediction (%RMSEP) of 1.4 % for baseline rectifier voltage during good anode condition. When the anode condition was estimated as bad (by manual inspection), at the same time we observe a large distinctive deviation in regard to the predicted baseline voltage. The gained information about the observed deviation can be used for early detection resp. classification of anode ageing to recognize the onset of damage and reduce total operation cost.

Izvorni jezik
Engleski

Znanstvena područja
Kemija, Interdisciplinarne prirodne znanosti, Kemijsko inženjerstvo, Računarstvo, Interdisciplinarne tehničke znanosti



POVEZANOST RADA


Profili:

Avatar Url Mario Lovrić (autor)

Poveznice na cjeloviti tekst rada:

www.researchgate.net

Citiraj ovu publikaciju:

Lovrić, Mario; Fadljević, Leon; Kern, Roman; Steck, Thomas; Gerdenitsch, Johann; Peche, Ernst
PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS // Galvatech 2021 - 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet
Beč: GALVATECH 2021- ASMET, 2021. str. 310-317 (predavanje, međunarodna recenzija, cjeloviti rad (in extenso), ostalo)
Lovrić, M., Fadljević, L., Kern, R., Steck, T., Gerdenitsch, J. & Peche, E. (2021) PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS. U: Galvatech 2021 - 12th International Conference on Zinc & Zinc Alloy Coated Steel Sheet.
@article{article, author = {Lovri\'{c}, Mario and Fadljevi\'{c}, Leon and Kern, Roman and Steck, Thomas and Gerdenitsch, Johann and Peche, Ernst}, year = {2021}, pages = {310-317}, keywords = {machine learning, big data, electro-galvanization, voltage}, isbn = {978-3-200-07779-9}, title = {PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS}, keyword = {machine learning, big data, electro-galvanization, voltage}, publisher = {GALVATECH 2021- ASMET}, publisherplace = {Be\v{c}, Austrija} }
@article{article, author = {Lovri\'{c}, Mario and Fadljevi\'{c}, Leon and Kern, Roman and Steck, Thomas and Gerdenitsch, Johann and Peche, Ernst}, year = {2021}, pages = {310-317}, keywords = {machine learning, big data, electro-galvanization, voltage}, isbn = {978-3-200-07779-9}, title = {PREDICTION OF ANODE LIFETIME IN ELECTRO GALVANIZING LINES BY BIG DATA ANALYSIS}, keyword = {machine learning, big data, electro-galvanization, voltage}, publisher = {GALVATECH 2021- ASMET}, publisherplace = {Be\v{c}, Austrija} }




Contrast
Increase Font
Decrease Font
Dyslexic Font